***************************************************************************** * www.FindStat.org - The Combinatorial Statistic Finder * * * * Copyright (C) 2019 The FindStatCrew * * * * This information is distributed in the hope that it will be useful, * * but WITHOUT ANY WARRANTY; without even the implied warranty of * * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. * ***************************************************************************** ----------------------------------------------------------------------------- Statistic identifier: St001644 ----------------------------------------------------------------------------- Collection: Graphs ----------------------------------------------------------------------------- Description: The dimension of a graph. The dimension of a graph is the least integer $n$ such that there exists a representation of the graph in the Euclidean space of dimension $n$ with all vertices distinct and all edges having unit length. Edges are allowed to intersect, however. ----------------------------------------------------------------------------- References: [1] Erdős, P., Harary, F., Tutte, W. T. On the dimension of a graph [[MathSciNet:0188096]] [2] [[https://en.wikipedia.org/wiki/Dimension_(graph_theory)]] ----------------------------------------------------------------------------- Code: """ On the dimension of a graph, Paul Erdös, Frank Harary and William T. Tutte """ dimensions = dict() N = 7 for n in range(1,N+1): # C_n if n > 3: G = graphs.CycleGraph(n) dimensions[G.canonical_label().copy(immutable=True)] = 2 # P_n if n > 1: G = graphs.PathGraph(n) dimensions[G.canonical_label().copy(immutable=True)] = 1 # K_n G = graphs.CompleteGraph(n) dimensions[G.canonical_label().copy(immutable=True)] = n-1 # K_n-e if n > 2: G.delete_edge(G.edges()[0]) dimensions[G.canonical_label().copy(immutable=True)] = n-2 # K_{2,n} G = graphs.CompleteBipartiteGraph(2, n) if n >= 3: dimensions[G.canonical_label().copy(immutable=True)] = 3 elif n == 2: dimensions[G.canonical_label().copy(immutable=True)] = 2 # K_{3,n} G = graphs.CompleteBipartiteGraph(3, n) if n >= 3: dimensions[G.canonical_label().copy(immutable=True)] = 4 # Wheel G = graphs.WheelGraph(n) # n vertices if n in [5, 6]: dimensions[G.canonical_label().copy(immutable=True)] = 3 elif n == 7: dimensions[G.canonical_label().copy(immutable=True)] = 2 elif n > 7: dimensions[G.canonical_label().copy(immutable=True)] = 3 G = graphs.CubeGraph(n) # 2^n vertices if n > 1: dimensions[G.canonical_label().copy(immutable=True)] = 2 def statistic(G): global dimensions # bridges do not change the dimension, unless we have a forest G = G.copy(immutable=False) bridges = list(G.bridges()) if G.num_edges() == len(bridges): if G.num_edges() == 0: return 0 if max(G.degree()) <= 2: return 1 return 2 G.delete_edges(bridges) l = G.connected_components_subgraphs() if len(l) > 1: statistics = [statistic(H) for H in l] if not any(v is None for v in statistics): return max(statistics) l = G.blocks_and_cut_vertices()[0] if len(l) > 1: statistics = [statistic(G.subgraph(B)) for B in l] if not any(v is None for v in statistics): return max(statistics) G = G.canonical_label().copy(immutable=True) if G in dimensions: return dimensions[G] n = G.num_verts() if G.is_clique(): return n-1 ----------------------------------------------------------------------------- Statistic values: ([],0) => 0 ([],1) => 0 ([],2) => 0 ([(0,1)],2) => 1 ([],3) => 0 ([(1,2)],3) => 1 ([(0,2),(1,2)],3) => 1 ([(0,1),(0,2),(1,2)],3) => 2 ([],4) => 0 ([(2,3)],4) => 1 ([(1,3),(2,3)],4) => 1 ([(0,3),(1,3),(2,3)],4) => 2 ([(0,3),(1,2)],4) => 1 ([(0,3),(1,2),(2,3)],4) => 1 ([(1,2),(1,3),(2,3)],4) => 2 ([(0,3),(1,2),(1,3),(2,3)],4) => 2 ([(0,2),(0,3),(1,2),(1,3)],4) => 2 ([(0,2),(0,3),(1,2),(1,3),(2,3)],4) => 2 ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4) => 3 ([],5) => 0 ([(3,4)],5) => 1 ([(2,4),(3,4)],5) => 1 ([(1,4),(2,4),(3,4)],5) => 2 ([(0,4),(1,4),(2,4),(3,4)],5) => 2 ([(1,4),(2,3)],5) => 1 ([(1,4),(2,3),(3,4)],5) => 1 ([(0,1),(2,4),(3,4)],5) => 1 ([(2,3),(2,4),(3,4)],5) => 2 ([(0,4),(1,4),(2,3),(3,4)],5) => 2 ([(1,4),(2,3),(2,4),(3,4)],5) => 2 ([(0,4),(1,4),(2,3),(2,4),(3,4)],5) => 2 ([(1,3),(1,4),(2,3),(2,4)],5) => 2 ([(0,4),(1,2),(1,3),(2,4),(3,4)],5) => 2 ([(1,3),(1,4),(2,3),(2,4),(3,4)],5) => 2 ([(0,4),(1,3),(2,3),(2,4),(3,4)],5) => 2 ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => 2 ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5) => 3 ([(0,4),(1,3),(2,3),(2,4)],5) => 1 ([(0,1),(2,3),(2,4),(3,4)],5) => 2 ([(0,3),(1,2),(1,4),(2,4),(3,4)],5) => 2 ([(0,3),(0,4),(1,2),(1,4),(2,4),(3,4)],5) => 2 ([(0,3),(0,4),(1,2),(1,4),(2,3)],5) => 2 ([(0,4),(1,2),(1,3),(2,3),(2,4),(3,4)],5) => 2 ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => 3 ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => 3 ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,4),(3,4)],5) => 3 ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => 3 ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => 4 ([],6) => 0 ([(4,5)],6) => 1 ([(3,5),(4,5)],6) => 1 ([(2,5),(3,5),(4,5)],6) => 2 ([(1,5),(2,5),(3,5),(4,5)],6) => 2 ([(0,5),(1,5),(2,5),(3,5),(4,5)],6) => 2 ([(2,5),(3,4)],6) => 1 ([(2,5),(3,4),(4,5)],6) => 1 ([(1,2),(3,5),(4,5)],6) => 1 ([(3,4),(3,5),(4,5)],6) => 2 ([(1,5),(2,5),(3,4),(4,5)],6) => 2 ([(0,1),(2,5),(3,5),(4,5)],6) => 2 ([(2,5),(3,4),(3,5),(4,5)],6) => 2 ([(0,5),(1,5),(2,5),(3,4),(4,5)],6) => 2 ([(1,5),(2,5),(3,4),(3,5),(4,5)],6) => 2 ([(0,5),(1,5),(2,5),(3,4),(3,5),(4,5)],6) => 2 ([(2,4),(2,5),(3,4),(3,5)],6) => 2 ([(0,5),(1,5),(2,4),(3,4)],6) => 1 ([(1,5),(2,3),(2,4),(3,5),(4,5)],6) => 2 ([(0,5),(1,5),(2,3),(3,4),(4,5)],6) => 2 ([(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 2 ([(1,5),(2,4),(3,4),(3,5),(4,5)],6) => 2 ([(0,5),(1,5),(2,4),(3,4),(4,5)],6) => 2 ([(0,5),(1,5),(2,3),(2,4),(3,5),(4,5)],6) => 2 ([(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 2 ([(0,5),(1,5),(2,4),(3,4),(3,5),(4,5)],6) => 2 ([(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 2 ([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6) => 3 ([(0,5),(1,4),(2,4),(2,5),(3,4),(3,5)],6) => 2 ([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6) => 3 ([(0,5),(1,4),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 2 ([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6) => 3 ([(0,5),(1,4),(2,3)],6) => 1 ([(1,5),(2,4),(3,4),(3,5)],6) => 1 ([(0,1),(2,5),(3,4),(4,5)],6) => 1 ([(1,2),(3,4),(3,5),(4,5)],6) => 2 ([(0,5),(1,4),(2,3),(3,5),(4,5)],6) => 2 ([(1,4),(2,3),(2,5),(3,5),(4,5)],6) => 2 ([(0,1),(2,5),(3,4),(3,5),(4,5)],6) => 2 ([(0,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6) => 2 ([(1,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6) => 2 ([(0,5),(1,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6) => 2 ([(1,4),(1,5),(2,3),(2,5),(3,4)],6) => 2 ([(0,5),(1,4),(2,3),(2,4),(3,5),(4,5)],6) => 2 ([(0,5),(1,2),(1,4),(2,3),(3,5),(4,5)],6) => 2 ([(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6) => 2 ([(0,5),(1,4),(2,3),(3,4),(3,5),(4,5)],6) => 2 ([(0,5),(1,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 2 ([(0,5),(1,4),(2,3),(2,4),(3,5)],6) => 1 ([(0,1),(2,4),(2,5),(3,4),(3,5)],6) => 2 ([(0,5),(1,5),(2,3),(2,4),(3,4)],6) => 2 ([(0,4),(1,2),(1,3),(2,5),(3,5),(4,5)],6) => 2 ([(0,4),(1,2),(1,5),(2,5),(3,4),(3,5)],6) => 2 ([(0,4),(1,2),(2,5),(3,4),(3,5),(4,5)],6) => 2 ([(0,1),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 2 ([(0,4),(1,4),(2,3),(2,5),(3,5),(4,5)],6) => 2 ([(0,3),(0,4),(1,2),(1,5),(2,5),(3,5),(4,5)],6) => 2 ([(0,3),(1,4),(1,5),(2,4),(2,5),(3,5),(4,5)],6) => 2 ([(0,4),(1,2),(1,5),(2,5),(3,4),(3,5),(4,5)],6) => 2 ([(0,1),(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 2 ([(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 3 ([(0,5),(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6) => 2 ([(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 3 ([(0,5),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 3 ([(0,5),(1,4),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 3 ([(0,5),(1,3),(1,4),(2,3),(2,4),(3,5),(4,5)],6) => 3 ([(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,5),(4,5)],6) => 3 ([(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,5),(4,5)],6) => 3 ([(0,4),(0,5),(1,2),(1,3),(2,5),(3,4)],6) => 2 ([(0,5),(1,4),(2,3),(2,4),(2,5),(3,4),(3,5)],6) => 2 ([(0,5),(1,2),(1,3),(1,4),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 3 ([(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 3 ([(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 3 ([(0,3),(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5)],6) => 4 ([(0,4),(0,5),(1,2),(1,3),(2,3),(4,5)],6) => 2 ([(0,2),(1,4),(1,5),(2,3),(3,4),(3,5),(4,5)],6) => 2 ([(0,1),(0,5),(1,5),(2,3),(2,4),(3,4),(4,5)],6) => 2 ([(0,1),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 3 ([(0,1),(0,5),(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6) => 2 ([(0,1),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 3 ([(0,1),(0,5),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 3 ([(0,3),(0,4),(0,5),(1,2),(1,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6) => 3 ([(0,5),(1,2),(1,3),(1,4),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 3 ([(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 4 ([(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 4 ([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 4 ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 5 ([],7) => 0 ([(5,6)],7) => 1 ([(4,6),(5,6)],7) => 1 ([(3,6),(4,6),(5,6)],7) => 2 ([(2,6),(3,6),(4,6),(5,6)],7) => 2 ([(1,6),(2,6),(3,6),(4,6),(5,6)],7) => 2 ([(0,6),(1,6),(2,6),(3,6),(4,6),(5,6)],7) => 2 ([(3,6),(4,5)],7) => 1 ([(3,6),(4,5),(5,6)],7) => 1 ([(2,3),(4,6),(5,6)],7) => 1 ([(4,5),(4,6),(5,6)],7) => 2 ([(2,6),(3,6),(4,5),(5,6)],7) => 2 ([(1,2),(3,6),(4,6),(5,6)],7) => 2 ([(3,6),(4,5),(4,6),(5,6)],7) => 2 ([(1,6),(2,6),(3,6),(4,5),(5,6)],7) => 2 ([(0,1),(2,6),(3,6),(4,6),(5,6)],7) => 2 ([(2,6),(3,6),(4,5),(4,6),(5,6)],7) => 2 ([(0,6),(1,6),(2,6),(3,6),(4,5),(5,6)],7) => 2 ([(1,6),(2,6),(3,6),(4,5),(4,6),(5,6)],7) => 2 ([(0,6),(1,6),(2,6),(3,6),(4,5),(4,6),(5,6)],7) => 2 ([(3,5),(3,6),(4,5),(4,6)],7) => 2 ([(1,6),(2,6),(3,5),(4,5)],7) => 1 ([(2,6),(3,4),(3,5),(4,6),(5,6)],7) => 2 ([(1,6),(2,6),(3,4),(4,5),(5,6)],7) => 2 ([(0,6),(1,6),(2,6),(3,5),(4,5)],7) => 2 ([(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 2 ([(2,6),(3,5),(4,5),(4,6),(5,6)],7) => 2 ([(1,6),(2,6),(3,5),(4,5),(5,6)],7) => 2 ([(1,6),(2,6),(3,4),(3,5),(4,6),(5,6)],7) => 2 ([(0,6),(1,6),(2,6),(3,4),(4,5),(5,6)],7) => 2 ([(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 2 ([(1,6),(2,6),(3,5),(4,5),(4,6),(5,6)],7) => 2 ([(0,6),(1,6),(2,6),(3,5),(4,5),(5,6)],7) => 2 ([(0,6),(1,6),(2,6),(3,5),(3,6),(4,5),(4,6)],7) => 2 ([(1,6),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 2 ([(0,6),(1,6),(2,6),(3,5),(4,5),(4,6),(5,6)],7) => 2 ([(0,6),(1,6),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 2 ([(2,5),(2,6),(3,5),(3,6),(4,5),(4,6)],7) => 3 ([(1,6),(2,5),(3,5),(3,6),(4,5),(4,6)],7) => 2 ([(0,6),(1,6),(2,5),(3,5),(4,5),(4,6)],7) => 2 ([(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6)],7) => 3 ([(0,6),(1,6),(2,5),(3,5),(3,6),(4,5),(4,6)],7) => 2 ([(1,6),(2,5),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 2 ([(0,6),(1,6),(2,5),(3,5),(4,5),(4,6),(5,6)],7) => 2 ([(0,6),(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6)],7) => 3 ([(0,6),(1,6),(2,5),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 2 ([(1,5),(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6)],7) => 3 ([(0,6),(1,5),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6)],7) => 3 ([(0,6),(1,5),(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6)],7) => 3 ([(0,5),(0,6),(1,5),(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6)],7) => 3 ([(1,6),(2,5),(3,4)],7) => 1 ([(2,6),(3,5),(4,5),(4,6)],7) => 1 ([(1,2),(3,6),(4,5),(5,6)],7) => 1 ([(0,3),(1,2),(4,6),(5,6)],7) => 1 ([(2,3),(4,5),(4,6),(5,6)],7) => 2 ([(1,6),(2,5),(3,4),(4,6),(5,6)],7) => 2 ([(0,1),(2,6),(3,6),(4,5),(5,6)],7) => 2 ([(2,5),(3,4),(3,6),(4,6),(5,6)],7) => 2 ([(1,2),(3,6),(4,5),(4,6),(5,6)],7) => 2 ([(0,6),(1,6),(2,5),(3,4),(4,6),(5,6)],7) => 2 ([(1,5),(2,6),(3,4),(3,6),(4,6),(5,6)],7) => 2 ([(0,1),(2,6),(3,6),(4,5),(4,6),(5,6)],7) => 2 ([(0,6),(1,6),(2,3),(3,6),(4,5),(4,6),(5,6)],7) => 2 ([(2,5),(2,6),(3,4),(3,6),(4,5)],7) => 2 ([(1,6),(2,5),(3,4),(3,5),(4,6),(5,6)],7) => 2 ([(0,6),(1,6),(2,3),(3,5),(4,5),(4,6)],7) => 2 ([(1,6),(2,3),(2,5),(3,4),(4,6),(5,6)],7) => 2 ([(2,6),(3,4),(3,5),(4,5),(4,6),(5,6)],7) => 2 ([(1,6),(2,5),(3,4),(4,5),(4,6),(5,6)],7) => 2 ([(0,6),(1,6),(2,5),(3,4),(3,6),(4,5),(5,6)],7) => 2 ([(0,6),(1,6),(2,3),(3,5),(4,5),(4,6),(5,6)],7) => 2 ([(0,6),(1,6),(2,3),(2,5),(3,4),(4,6),(5,6)],7) => 2 ([(1,6),(2,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 2 ([(0,6),(1,6),(2,5),(3,4),(4,5),(4,6),(5,6)],7) => 2 ([(0,6),(1,6),(2,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 2 ([(1,6),(2,5),(3,4),(3,5),(4,6)],7) => 1 ([(1,2),(3,5),(3,6),(4,5),(4,6)],7) => 2 ([(0,6),(1,5),(2,4),(3,4),(5,6)],7) => 1 ([(1,6),(2,6),(3,4),(3,5),(4,5)],7) => 2 ([(1,5),(2,3),(2,4),(3,6),(4,6),(5,6)],7) => 2 ([(0,6),(1,4),(2,3),(3,6),(4,5),(5,6)],7) => 2 ([(0,1),(2,6),(3,5),(3,6),(4,5),(4,6)],7) => 2 ([(1,5),(2,3),(2,6),(3,6),(4,5),(4,6)],7) => 2 ([(0,6),(1,3),(2,3),(4,5),(4,6),(5,6)],7) => 2 ([(1,5),(2,3),(3,6),(4,5),(4,6),(5,6)],7) => 2 ([(1,2),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 2 ([(0,6),(1,5),(2,5),(3,4),(4,6),(5,6)],7) => 2 ([(0,1),(2,6),(3,5),(4,5),(4,6),(5,6)],7) => 2 ([(1,5),(2,5),(3,4),(3,6),(4,6),(5,6)],7) => 2 ([(0,5),(1,6),(2,3),(2,4),(3,6),(4,6),(5,6)],7) => 2 ([(0,5),(1,6),(2,3),(2,6),(3,6),(4,5),(4,6)],7) => 2 ([(1,4),(2,5),(2,6),(3,5),(3,6),(4,6),(5,6)],7) => 2 ([(0,6),(1,5),(2,3),(3,6),(4,5),(4,6),(5,6)],7) => 2 ([(0,1),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 2 ([(0,6),(1,5),(2,5),(3,4),(3,6),(4,6),(5,6)],7) => 2 ([(0,4),(1,6),(2,5),(2,6),(3,5),(3,6),(4,6),(5,6)],7) => 2 ([(0,6),(1,6),(2,6),(3,4),(3,5),(4,5)],7) => 2 ([(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 3 ([(0,6),(1,6),(2,6),(3,4),(3,5),(4,5),(5,6)],7) => 2 ([(1,6),(2,6),(3,4),(3,5),(4,5),(4,6),(5,6)],7) => 2 ([(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 3 ([(0,6),(1,6),(2,6),(3,4),(3,5),(4,5),(4,6),(5,6)],7) => 2 ([(1,6),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 3 ([(0,6),(1,6),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 3 ([(0,6),(1,5),(2,3),(2,5),(3,6),(4,5),(4,6)],7) => 2 ([(0,6),(1,4),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6)],7) => 3 ([(0,6),(1,5),(2,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 2 ([(0,6),(1,5),(2,5),(3,4),(3,6),(4,5),(4,6),(5,6)],7) => 2 ([(0,6),(1,4),(2,5),(2,6),(3,5),(3,6),(4,5)],7) => 2 ([(0,1),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6)],7) => 3 ([(0,6),(1,6),(2,3),(2,5),(3,5),(4,5),(4,6)],7) => 2 ([(0,4),(1,5),(1,6),(2,5),(2,6),(3,5),(3,6),(4,6)],7) => 3 ([(0,6),(1,4),(2,5),(2,6),(3,5),(3,6),(4,5),(5,6)],7) => 2 ([(0,6),(1,6),(2,3),(3,4),(3,5),(4,5),(4,6),(5,6)],7) => 2 ([(1,6),(2,5),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 3 ([(0,6),(1,6),(2,5),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 3 ([(0,4),(1,5),(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6)],7) => 3 ([(1,6),(2,4),(2,5),(3,4),(3,5),(4,6),(5,6)],7) => 3 ([(0,6),(1,6),(2,4),(2,5),(3,4),(3,5),(4,6),(5,6)],7) => 3 ([(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,6),(5,6)],7) => 3 ([(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,6),(5,6)],7) => 3 ([(0,6),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,6),(5,6)],7) => 3 ([(1,5),(1,6),(2,3),(2,4),(3,6),(4,5)],7) => 2 ([(0,6),(1,2),(1,3),(2,5),(3,4),(4,6),(5,6)],7) => 2 ([(0,6),(1,5),(2,3),(2,4),(3,5),(4,6),(5,6)],7) => 2 ([(1,6),(2,5),(3,4),(3,5),(3,6),(4,5),(4,6)],7) => 2 ([(0,4),(1,6),(2,5),(3,5),(3,6),(4,5),(4,6)],7) => 2 ([(0,6),(1,2),(2,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 2 ([(0,6),(1,4),(2,3),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 2 ([(0,6),(1,6),(2,4),(2,5),(3,4),(3,5)],7) => 2 ([(0,5),(1,2),(1,3),(2,6),(3,6),(4,5),(4,6)],7) => 2 ([(0,4),(1,4),(2,5),(2,6),(3,5),(3,6),(5,6)],7) => 2 ([(0,6),(1,4),(2,5),(2,6),(3,4),(3,5),(5,6)],7) => 2 ([(0,6),(1,6),(2,3),(2,4),(3,5),(4,5),(5,6)],7) => 2 ([(0,4),(1,4),(2,5),(3,5),(3,6),(4,6),(5,6)],7) => 2 ([(0,4),(0,5),(1,2),(1,3),(2,6),(3,6),(4,6),(5,6)],7) => 2 ([(0,4),(1,4),(1,6),(2,5),(2,6),(3,5),(3,6),(5,6)],7) => 2 ([(0,4),(1,4),(2,5),(2,6),(3,5),(3,6),(4,6),(5,6)],7) => 2 ([(0,6),(1,5),(2,3),(2,4),(3,5),(3,6),(4,5),(4,6)],7) => 3 ([(0,6),(1,5),(2,3),(2,4),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 3 ([(1,6),(2,3),(2,4),(2,5),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 3 ([(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 3 ([(0,6),(1,6),(2,3),(2,4),(2,5),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 3 ([(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 3 ([(0,6),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 3 ([(0,6),(1,5),(2,4),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 3 ([(0,6),(1,5),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 3 ([(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6)],7) => 4 ([(0,6),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,6),(4,6),(5,6)],7) => 4 ([(0,6),(1,5),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6)],7) => 3 ([(0,4),(0,5),(0,6),(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6)],7) => 4 ([(0,1),(2,5),(3,4),(4,6),(5,6)],7) => 1 ([(0,3),(1,2),(4,5),(4,6),(5,6)],7) => 2 ([(0,5),(1,4),(2,3),(3,6),(4,6),(5,6)],7) => 2 ([(0,1),(2,3),(3,6),(4,5),(4,6),(5,6)],7) => 2 ([(0,5),(1,4),(2,3),(2,6),(3,6),(4,6),(5,6)],7) => 2 ([(0,5),(0,6),(1,4),(1,6),(2,3),(2,6),(3,6),(4,6),(5,6)],7) => 2 ([(0,6),(1,5),(2,3),(2,4),(3,5),(4,6)],7) => 1 ([(0,1),(2,5),(2,6),(3,4),(3,6),(4,5)],7) => 2 ([(0,6),(1,5),(2,3),(2,4),(3,4),(5,6)],7) => 2 ([(0,6),(1,4),(2,3),(2,6),(3,5),(4,5),(5,6)],7) => 2 ([(0,4),(1,3),(2,5),(2,6),(3,5),(4,6),(5,6)],7) => 2 ([(0,5),(1,2),(1,4),(2,3),(3,6),(4,6),(5,6)],7) => 2 ([(0,6),(1,4),(2,3),(2,5),(3,5),(4,6),(5,6)],7) => 2 ([(0,5),(1,4),(1,5),(2,3),(2,6),(3,6),(4,6)],7) => 2 ([(0,5),(1,4),(2,3),(3,6),(4,5),(4,6),(5,6)],7) => 2 ([(0,4),(1,3),(2,5),(2,6),(3,6),(4,5),(4,6),(5,6)],7) => 2 ([(1,5),(1,6),(2,3),(2,4),(3,4),(5,6)],7) => 2 ([(1,3),(2,5),(2,6),(3,4),(4,5),(4,6),(5,6)],7) => 2 ([(0,1),(2,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 2 ([(1,2),(1,6),(2,6),(3,4),(3,5),(4,5),(5,6)],7) => 2 ([(0,6),(1,2),(1,3),(2,3),(4,5),(4,6),(5,6)],7) => 2 ([(1,2),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 3 ([(0,6),(1,2),(2,6),(3,4),(3,5),(4,5),(4,6),(5,6)],7) => 2 ([(0,6),(1,2),(1,6),(2,6),(3,4),(3,5),(4,5),(5,6)],7) => 2 ([(1,2),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 3 ([(0,1),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 3 ([(0,6),(1,2),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 3 ([(0,1),(0,6),(1,6),(2,3),(2,5),(3,5),(4,5),(4,6)],7) => 2 ([(0,5),(1,2),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 3 ([(0,5),(0,6),(1,2),(1,4),(2,3),(3,5),(4,6)],7) => 2 ([(0,6),(1,2),(2,5),(3,4),(3,5),(3,6),(4,5),(4,6)],7) => 2 ([(1,4),(1,5),(1,6),(2,3),(2,5),(2,6),(3,4),(3,6),(4,6),(5,6)],7) => 3 ([(0,6),(1,4),(1,5),(1,6),(2,3),(2,5),(2,6),(3,4),(3,6),(4,6),(5,6)],7) => 3 ([(0,6),(1,5),(2,3),(2,4),(2,5),(3,4),(3,6),(4,5),(4,6),(5,6)],7) => 3 ([(0,5),(1,2),(1,4),(1,6),(2,3),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 3 ([(1,6),(2,3),(2,4),(2,5),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 3 ([(0,5),(1,6),(2,3),(2,4),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 3 ([(0,3),(1,4),(1,5),(2,4),(2,5),(3,6),(4,6),(5,6)],7) => 3 ([(0,3),(0,4),(1,2),(1,5),(2,5),(3,6),(4,6),(5,6)],7) => 2 ([(0,1),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,6),(5,6)],7) => 3 ([(0,1),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,6),(5,6)],7) => 3 ([(0,1),(1,6),(2,3),(2,4),(2,5),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 3 ([(0,1),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 3 ([(0,1),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 3 ([(0,5),(0,6),(1,2),(1,3),(2,3),(4,5),(4,6)],7) => 2 ([(0,3),(1,3),(1,4),(2,5),(2,6),(4,5),(4,6),(5,6)],7) => 2 ([(0,2),(1,2),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 3 ([(0,6),(1,2),(1,4),(2,4),(3,5),(3,6),(4,5),(5,6)],7) => 2 ([(0,1),(0,2),(1,2),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 2 ([(0,6),(1,6),(2,4),(2,5),(3,4),(3,5),(3,6),(4,5)],7) => 2 ([(0,2),(1,2),(1,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 3 ([(0,1),(0,4),(1,4),(2,5),(2,6),(3,5),(3,6),(4,6),(5,6)],7) => 2 ([(0,5),(1,5),(2,3),(2,4),(2,6),(3,4),(3,6),(4,6),(5,6)],7) => 3 ([(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 4 ([(0,6),(1,6),(2,3),(2,4),(2,5),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 3 ([(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 4 ([(0,6),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 4 ([(0,6),(1,5),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 4 ([(0,6),(1,5),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6)],7) => 3 ([(0,4),(0,5),(0,6),(1,2),(1,3),(1,6),(2,5),(2,6),(3,4),(3,6),(4,6),(5,6)],7) => 2 ([(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 4 ([(0,6),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 4 ([(0,4),(0,5),(1,2),(1,6),(2,6),(3,4),(3,5),(3,6),(4,5)],7) => 2 ([(0,1),(0,2),(1,2),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 3 ([(0,4),(0,5),(1,2),(1,3),(2,3),(2,6),(3,6),(4,5),(4,6),(5,6)],7) => 2 ([(0,1),(0,5),(1,5),(2,3),(2,4),(2,6),(3,4),(3,6),(4,6),(5,6)],7) => 3 ([(0,1),(1,6),(2,3),(2,4),(2,5),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 3 ([(0,1),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 4 ([(0,1),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 4 ([(0,6),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 4 ([(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 5 ([(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 5 ([(0,2),(0,3),(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 5 ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 6 ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(1,2),(1,3),(1,4),(1,5),(1,6),(1,7),(2,3),(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8) => 7 ([(0,7),(1,2),(1,3),(1,4),(1,5),(1,6),(1,7),(2,3),(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8) => 6 ([(0,7),(1,6),(2,5),(3,4)],8) => 1 ([(0,3),(1,2),(4,6),(4,7),(5,6),(5,7)],8) => 2 ([(0,1),(2,5),(2,6),(2,7),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7)],8) => 4 ([(0,6),(0,7),(1,3),(1,4),(2,3),(2,4),(5,6),(5,7)],8) => 2 ([(0,3),(1,2),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8) => 3 ([(0,1),(2,3),(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8) => 5 ([(0,2),(0,3),(1,2),(1,3),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8) => 3 ([(0,5),(0,6),(0,7),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4),(5,6),(5,7),(6,7)],8) => 3 ([(0,5),(0,6),(0,7),(1,2),(1,3),(1,4),(2,6),(2,7),(3,5),(3,7),(4,5),(4,6)],8) => 2 ([(0,7),(1,6),(2,5),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7)],8) => 3 ([(0,8),(1,6),(2,6),(3,7),(4,5),(5,8),(6,7),(7,8)],9) => 2 ([(0,6),(1,6),(2,7),(3,7),(4,8),(5,7),(5,8),(6,8)],9) => 2 ([(0,7),(1,7),(2,6),(3,6),(4,5),(5,8),(6,8),(7,8)],9) => 2 ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(0,8),(1,2),(1,3),(1,4),(1,5),(1,6),(1,7),(1,8),(2,3),(2,4),(2,5),(2,6),(2,7),(2,8),(3,4),(3,5),(3,6),(3,7),(3,8),(4,5),(4,6),(4,7),(4,8),(5,6),(5,7),(5,8),(6,7),(6,8),(7,8)],9) => 8 ([(1,6),(1,7),(1,8),(2,3),(2,4),(2,5),(3,7),(3,8),(4,6),(4,8),(5,6),(5,7)],9) => 2 ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(0,8),(0,9),(1,2),(1,3),(1,4),(1,5),(1,6),(1,7),(1,8),(1,9),(2,3),(2,4),(2,5),(2,6),(2,7),(2,8),(2,9),(3,4),(3,5),(3,6),(3,7),(3,8),(3,9),(4,5),(4,6),(4,7),(4,8),(4,9),(5,6),(5,7),(5,8),(5,9),(6,7),(6,8),(6,9),(7,8),(7,9),(8,9)],10) => 9 ([(0,10),(1,7),(2,7),(3,8),(4,9),(5,6),(6,10),(7,9),(8,9),(8,10)],11) => 2 ([(0,10),(1,8),(2,8),(3,7),(4,7),(5,6),(6,10),(7,9),(8,9),(9,10)],11) => 2 ([(0,8),(1,8),(2,9),(3,7),(4,7),(5,6),(6,10),(7,10),(8,9),(9,10)],11) => 2 ([(0,10),(1,9),(2,9),(3,7),(4,8),(5,8),(6,9),(6,10),(7,8),(7,10)],11) => 2 ([(0,9),(1,9),(2,8),(3,8),(4,7),(5,7),(6,9),(6,10),(7,10),(8,10)],11) => 2 ([(0,10),(1,9),(2,7),(3,7),(4,8),(5,8),(6,9),(6,10),(7,9),(8,10)],11) => 2 ([(0,11),(1,10),(2,9),(3,8),(4,8),(4,9),(4,10),(5,8),(5,9),(5,11),(6,8),(6,10),(6,11),(7,9),(7,10),(7,11)],12) => 2 ([(0,12),(1,8),(2,8),(3,9),(4,10),(5,11),(6,7),(7,12),(8,10),(9,11),(9,12),(10,11)],13) => 2 ([(0,12),(1,9),(2,9),(3,8),(4,8),(5,10),(6,7),(7,12),(8,11),(9,11),(10,11),(10,12)],13) => 2 ([(0,12),(1,8),(2,8),(3,9),(4,9),(5,10),(6,7),(7,12),(8,11),(9,10),(10,11),(11,12)],13) => 2 ([(0,9),(1,9),(2,10),(3,11),(4,8),(5,8),(6,7),(7,12),(8,12),(9,11),(10,11),(10,12)],13) => 2 ([(0,10),(1,10),(2,9),(3,9),(4,8),(5,8),(6,7),(7,12),(8,12),(9,11),(10,11),(11,12)],13) => 2 ([(0,8),(1,8),(2,9),(3,9),(4,11),(5,10),(6,7),(7,12),(8,10),(9,11),(10,12),(11,12)],13) => 2 ([(0,12),(1,11),(2,11),(3,8),(4,8),(5,9),(6,10),(7,11),(7,12),(8,10),(9,10),(9,12)],13) => 2 ([(0,11),(1,12),(2,12),(3,9),(4,9),(5,8),(6,8),(7,11),(7,12),(8,10),(9,10),(10,11)],13) => 2 ([(0,11),(1,11),(2,9),(3,9),(4,10),(5,8),(6,8),(7,11),(7,12),(8,12),(9,10),(10,12)],13) => 2 ([(0,12),(1,11),(2,9),(3,9),(4,10),(5,8),(6,8),(7,11),(7,12),(8,11),(9,10),(10,12)],13) => 2 ([(0,11),(1,9),(2,9),(3,8),(4,8),(5,10),(6,10),(7,11),(7,12),(8,12),(9,12),(10,11)],13) => 2 ----------------------------------------------------------------------------- Created: Nov 20, 2020 at 18:53 by Martin Rubey ----------------------------------------------------------------------------- Last Updated: Nov 23, 2020 at 21:20 by Martin Rubey