Identifier
- St001650: Dyck paths ⟶ ℤ
Values
=>
Cc0005;cc-rep
[1,0]=>2
[1,0,1,0]=>3
[1,1,0,0]=>3
[1,0,1,0,1,0]=>4
[1,0,1,1,0,0]=>4
[1,1,0,0,1,0]=>4
[1,1,0,1,0,0]=>4
[1,1,1,0,0,0]=>4
[1,0,1,0,1,0,1,0]=>5
[1,0,1,0,1,1,0,0]=>5
[1,0,1,1,0,0,1,0]=>5
[1,0,1,1,0,1,0,0]=>5
[1,0,1,1,1,0,0,0]=>5
[1,1,0,0,1,0,1,0]=>5
[1,1,0,0,1,1,0,0]=>5
[1,1,0,1,0,0,1,0]=>5
[1,1,0,1,0,1,0,0]=>6
[1,1,0,1,1,0,0,0]=>5
[1,1,1,0,0,0,1,0]=>5
[1,1,1,0,0,1,0,0]=>5
[1,1,1,0,1,0,0,0]=>5
[1,1,1,1,0,0,0,0]=>5
[1,0,1,0,1,0,1,0,1,0]=>6
[1,0,1,0,1,0,1,1,0,0]=>6
[1,0,1,0,1,1,0,0,1,0]=>6
[1,0,1,0,1,1,0,1,0,0]=>6
[1,0,1,0,1,1,1,0,0,0]=>6
[1,0,1,1,0,0,1,0,1,0]=>6
[1,0,1,1,0,0,1,1,0,0]=>6
[1,0,1,1,0,1,0,0,1,0]=>6
[1,0,1,1,0,1,0,1,0,0]=>4
[1,0,1,1,0,1,1,0,0,0]=>6
[1,0,1,1,1,0,0,0,1,0]=>6
[1,0,1,1,1,0,0,1,0,0]=>6
[1,0,1,1,1,0,1,0,0,0]=>6
[1,0,1,1,1,1,0,0,0,0]=>6
[1,1,0,0,1,0,1,0,1,0]=>6
[1,1,0,0,1,0,1,1,0,0]=>6
[1,1,0,0,1,1,0,0,1,0]=>6
[1,1,0,0,1,1,0,1,0,0]=>6
[1,1,0,0,1,1,1,0,0,0]=>6
[1,1,0,1,0,0,1,0,1,0]=>6
[1,1,0,1,0,0,1,1,0,0]=>6
[1,1,0,1,0,1,0,0,1,0]=>4
[1,1,0,1,0,1,0,1,0,0]=>3
[1,1,0,1,0,1,1,0,0,0]=>4
[1,1,0,1,1,0,0,0,1,0]=>6
[1,1,0,1,1,0,0,1,0,0]=>6
[1,1,0,1,1,0,1,0,0,0]=>3
[1,1,0,1,1,1,0,0,0,0]=>6
[1,1,1,0,0,0,1,0,1,0]=>6
[1,1,1,0,0,0,1,1,0,0]=>6
[1,1,1,0,0,1,0,0,1,0]=>6
[1,1,1,0,0,1,0,1,0,0]=>4
[1,1,1,0,0,1,1,0,0,0]=>6
[1,1,1,0,1,0,0,0,1,0]=>6
[1,1,1,0,1,0,0,1,0,0]=>3
[1,1,1,0,1,0,1,0,0,0]=>4
[1,1,1,0,1,1,0,0,0,0]=>6
[1,1,1,1,0,0,0,0,1,0]=>6
[1,1,1,1,0,0,0,1,0,0]=>6
[1,1,1,1,0,0,1,0,0,0]=>6
[1,1,1,1,0,1,0,0,0,0]=>6
[1,1,1,1,1,0,0,0,0,0]=>6
[1,0,1,0,1,0,1,0,1,0,1,0]=>7
[1,0,1,0,1,0,1,0,1,1,0,0]=>7
[1,0,1,0,1,0,1,1,0,0,1,0]=>7
[1,0,1,0,1,0,1,1,0,1,0,0]=>7
[1,0,1,0,1,0,1,1,1,0,0,0]=>7
[1,0,1,0,1,1,0,0,1,0,1,0]=>7
[1,0,1,0,1,1,0,0,1,1,0,0]=>7
[1,0,1,0,1,1,0,1,0,0,1,0]=>7
[1,0,1,0,1,1,0,1,0,1,0,0]=>10
[1,0,1,0,1,1,0,1,1,0,0,0]=>7
[1,0,1,0,1,1,1,0,0,0,1,0]=>7
[1,0,1,0,1,1,1,0,0,1,0,0]=>7
[1,0,1,0,1,1,1,0,1,0,0,0]=>7
[1,0,1,0,1,1,1,1,0,0,0,0]=>7
[1,0,1,1,0,0,1,0,1,0,1,0]=>7
[1,0,1,1,0,0,1,0,1,1,0,0]=>7
[1,0,1,1,0,0,1,1,0,0,1,0]=>7
[1,0,1,1,0,0,1,1,0,1,0,0]=>7
[1,0,1,1,0,0,1,1,1,0,0,0]=>7
[1,0,1,1,0,1,0,0,1,0,1,0]=>7
[1,0,1,1,0,1,0,0,1,1,0,0]=>7
[1,0,1,1,0,1,0,1,0,0,1,0]=>10
[1,0,1,1,0,1,0,1,0,1,0,0]=>12
[1,0,1,1,0,1,0,1,1,0,0,0]=>10
[1,0,1,1,0,1,1,0,0,0,1,0]=>7
[1,0,1,1,0,1,1,0,0,1,0,0]=>7
[1,0,1,1,0,1,1,0,1,0,0,0]=>12
[1,0,1,1,0,1,1,1,0,0,0,0]=>7
[1,0,1,1,1,0,0,0,1,0,1,0]=>7
[1,0,1,1,1,0,0,0,1,1,0,0]=>7
[1,0,1,1,1,0,0,1,0,0,1,0]=>7
[1,0,1,1,1,0,0,1,0,1,0,0]=>10
[1,0,1,1,1,0,0,1,1,0,0,0]=>7
[1,0,1,1,1,0,1,0,0,0,1,0]=>7
[1,0,1,1,1,0,1,0,0,1,0,0]=>12
[1,0,1,1,1,0,1,0,1,0,0,0]=>10
[1,0,1,1,1,0,1,1,0,0,0,0]=>7
[1,0,1,1,1,1,0,0,0,0,1,0]=>7
[1,0,1,1,1,1,0,0,0,1,0,0]=>7
[1,0,1,1,1,1,0,0,1,0,0,0]=>7
[1,0,1,1,1,1,0,1,0,0,0,0]=>7
[1,0,1,1,1,1,1,0,0,0,0,0]=>7
[1,1,0,0,1,0,1,0,1,0,1,0]=>7
[1,1,0,0,1,0,1,0,1,1,0,0]=>7
[1,1,0,0,1,0,1,1,0,0,1,0]=>7
[1,1,0,0,1,0,1,1,0,1,0,0]=>7
[1,1,0,0,1,0,1,1,1,0,0,0]=>7
[1,1,0,0,1,1,0,0,1,0,1,0]=>7
[1,1,0,0,1,1,0,0,1,1,0,0]=>7
[1,1,0,0,1,1,0,1,0,0,1,0]=>7
[1,1,0,0,1,1,0,1,0,1,0,0]=>10
[1,1,0,0,1,1,0,1,1,0,0,0]=>7
[1,1,0,0,1,1,1,0,0,0,1,0]=>7
[1,1,0,0,1,1,1,0,0,1,0,0]=>7
[1,1,0,0,1,1,1,0,1,0,0,0]=>7
[1,1,0,0,1,1,1,1,0,0,0,0]=>7
[1,1,0,1,0,0,1,0,1,0,1,0]=>7
[1,1,0,1,0,0,1,0,1,1,0,0]=>7
[1,1,0,1,0,0,1,1,0,0,1,0]=>7
[1,1,0,1,0,0,1,1,0,1,0,0]=>7
[1,1,0,1,0,0,1,1,1,0,0,0]=>7
[1,1,0,1,0,1,0,0,1,0,1,0]=>10
[1,1,0,1,0,1,0,0,1,1,0,0]=>10
[1,1,0,1,0,1,0,1,0,0,1,0]=>12
[1,1,0,1,0,1,0,1,0,1,0,0]=>12
[1,1,0,1,0,1,0,1,1,0,0,0]=>12
[1,1,0,1,0,1,1,0,0,0,1,0]=>10
[1,1,0,1,0,1,1,0,0,1,0,0]=>10
[1,1,0,1,0,1,1,0,1,0,0,0]=>12
[1,1,0,1,0,1,1,1,0,0,0,0]=>10
[1,1,0,1,1,0,0,0,1,0,1,0]=>7
[1,1,0,1,1,0,0,0,1,1,0,0]=>7
[1,1,0,1,1,0,0,1,0,0,1,0]=>7
[1,1,0,1,1,0,0,1,0,1,0,0]=>10
[1,1,0,1,1,0,0,1,1,0,0,0]=>7
[1,1,0,1,1,0,1,0,0,0,1,0]=>12
[1,1,0,1,1,0,1,0,0,1,0,0]=>7
[1,1,0,1,1,0,1,0,1,0,0,0]=>12
[1,1,0,1,1,0,1,1,0,0,0,0]=>12
[1,1,0,1,1,1,0,0,0,0,1,0]=>7
[1,1,0,1,1,1,0,0,0,1,0,0]=>7
[1,1,0,1,1,1,0,0,1,0,0,0]=>7
[1,1,0,1,1,1,0,1,0,0,0,0]=>12
[1,1,0,1,1,1,1,0,0,0,0,0]=>7
[1,1,1,0,0,0,1,0,1,0,1,0]=>7
[1,1,1,0,0,0,1,0,1,1,0,0]=>7
[1,1,1,0,0,0,1,1,0,0,1,0]=>7
[1,1,1,0,0,0,1,1,0,1,0,0]=>7
[1,1,1,0,0,0,1,1,1,0,0,0]=>7
[1,1,1,0,0,1,0,0,1,0,1,0]=>7
[1,1,1,0,0,1,0,0,1,1,0,0]=>7
[1,1,1,0,0,1,0,1,0,0,1,0]=>10
[1,1,1,0,0,1,0,1,0,1,0,0]=>12
[1,1,1,0,0,1,0,1,1,0,0,0]=>10
[1,1,1,0,0,1,1,0,0,0,1,0]=>7
[1,1,1,0,0,1,1,0,0,1,0,0]=>7
[1,1,1,0,0,1,1,0,1,0,0,0]=>12
[1,1,1,0,0,1,1,1,0,0,0,0]=>7
[1,1,1,0,1,0,0,0,1,0,1,0]=>7
[1,1,1,0,1,0,0,0,1,1,0,0]=>7
[1,1,1,0,1,0,0,1,0,0,1,0]=>12
[1,1,1,0,1,0,0,1,0,1,0,0]=>12
[1,1,1,0,1,0,0,1,1,0,0,0]=>12
[1,1,1,0,1,0,1,0,0,0,1,0]=>10
[1,1,1,0,1,0,1,0,0,1,0,0]=>12
[1,1,1,0,1,0,1,0,1,0,0,0]=>7
[1,1,1,0,1,0,1,1,0,0,0,0]=>10
[1,1,1,0,1,1,0,0,0,0,1,0]=>7
[1,1,1,0,1,1,0,0,0,1,0,0]=>7
[1,1,1,0,1,1,0,0,1,0,0,0]=>12
[1,1,1,0,1,1,0,1,0,0,0,0]=>12
[1,1,1,0,1,1,1,0,0,0,0,0]=>7
[1,1,1,1,0,0,0,0,1,0,1,0]=>7
[1,1,1,1,0,0,0,0,1,1,0,0]=>7
[1,1,1,1,0,0,0,1,0,0,1,0]=>7
[1,1,1,1,0,0,0,1,0,1,0,0]=>10
[1,1,1,1,0,0,0,1,1,0,0,0]=>7
[1,1,1,1,0,0,1,0,0,0,1,0]=>7
[1,1,1,1,0,0,1,0,0,1,0,0]=>12
[1,1,1,1,0,0,1,0,1,0,0,0]=>10
[1,1,1,1,0,0,1,1,0,0,0,0]=>7
[1,1,1,1,0,1,0,0,0,0,1,0]=>7
[1,1,1,1,0,1,0,0,0,1,0,0]=>12
[1,1,1,1,0,1,0,0,1,0,0,0]=>12
[1,1,1,1,0,1,0,1,0,0,0,0]=>10
[1,1,1,1,0,1,1,0,0,0,0,0]=>7
[1,1,1,1,1,0,0,0,0,0,1,0]=>7
[1,1,1,1,1,0,0,0,0,1,0,0]=>7
[1,1,1,1,1,0,0,0,1,0,0,0]=>7
[1,1,1,1,1,0,0,1,0,0,0,0]=>7
[1,1,1,1,1,0,1,0,0,0,0,0]=>7
[1,1,1,1,1,1,0,0,0,0,0,0]=>7
search for individual values
searching the database for the individual values of this statistic
/
search for generating function
searching the database for statistics with the same generating function
Description
The order of Ringel's homological bijection associated to the linear Nakayama algebra corresponding to the Dyck path.
References
[1] Ringel, C. M. The finitistic dimension of a Nakayama algebra arXiv:2008.10044
Code
DeclareOperation("coordinateofsimple", [IsList]); InstallMethod(coordinateofsimple, "for a representation of a quiver", [IsList],0,function(L) local A,S,simA,n,U,UU; A:=L[1]; S:=L[2]; simA:=SimpleModules(A); n:=Size(simA); U:=DimensionVector(S); UU:=Filtered([1..n],x->U[x]>0); return(Minimum(UU)); end ); DeclareOperation("eofsimplemodule", [IsList]); InstallMethod(eofsimplemodule, "for a representation of a quiver", [IsList],0,function(L) local S,t1,U,t2; S:=L[1]; t1:=ProjDimensionOfModule(S,33); U:=Range(InjectiveEnvelope(S)); t2:=ProjDimensionOfModule(U,33); return(Minimum(t1,t2)); end ); DeclareOperation("Ringelbijectionforgivensimple", [IsList]); InstallMethod(Ringelbijectionforgivensimple, "for a representation of a quiver", [IsList],0,function(L) local S,t1,U,t2,e; S:=L[1]; e:=eofsimplemodule([S]); U:=Range(InjectiveEnvelope(S)); if IsOddInt(e)=true then return(NthSyzygy(S,e)); else return(NthSyzygy(U,e));fi; end ); DeclareOperation("Ringelbijection",[IsList]); InstallMethod(Ringelbijection, "for a representation of a quiver", [IsList],0,function(LIST) local A,simA,n,W,i,WW,WW2; A:=LIST[1]; simA:=SimpleModules(A); n:=Size(simA); W:=[];for i in simA do Append(W,[Ringelbijectionforgivensimple([i])]);od; WW:=[];for i in [1..n] do Append(WW,[[i,coordinateofsimple([A,W[i]])]]);od; WW2:=[];for i in [1..n] do Append(WW2,[WW[i][2]]);od; return([WW,Size(Set(WW2))=n]); #first entry is map, second entry is whether it is a bijection. end); DeclareOperation("Ringelpermutationnormalform",[IsList]); InstallMethod(Ringelpermutationnormalform, "for a representation of a quiver", [IsList],0,function(LIST) local n,l,i,W,k,WW,WW2,O,f; A:=LIST[1]; f:=Ringelbijection([A])[1]; W:=[];for i in f do Append(W,[i[2]]);od; return(W); end); DeclareOperation("ringelmapaspermutation",[IsList]); InstallMethod(ringelmapaspermutation, "for a representation of a quiver", [IsList],0,function(LIST) local A,W,n,U,D; A:=LIST[1]; W:=Ringelpermutationnormalform([A]);n:=Size(W);U:=PermList(W); return(U); end); #example: A:=NakayamaAlgebra([3,3,2,1],GF(3));W:=Ringelpermutationnormalform([A]); #z:=5;R:=[];for i in [2..z] do Append(R,[BuildSequencesLNak(i)]);od;R:=Union(R);RR:=[];for i in R do Append(RR,[[i,Ringelpermutationnormalform([NakayamaAlgebra(i,GF(3))])]]);od;RR; DeclareOperation("OrderRingelpermutation",[IsList]); InstallMethod(OrderRingelpermutation, "for a representation of a quiver", [IsList],0,function(LIST) local n,l,i,W,k,WW,WW2,O,f; A:=LIST[1]; f:=ringelmapaspermutation([A]); return(Order(f)); end); #example: A:=NakayamaAlgebra([3,3,2,1],GF(3));W:=OrderRingelpermutation([A]);
Created
Nov 29, 2020 at 19:57 by Rene Marczinzik
Updated
Nov 29, 2020 at 19:57 by Rene Marczinzik
searching the database
Sorry, this statistic was not found in the database
or
add this statistic to the database – it's very simple and we need your support!