edit this statistic or download as text // json
Identifier
Values
=>
Cc0022;cc-rep
['A',1]=>2 ['A',2]=>5 ['B',2]=>7 ['G',2]=>11 ['A',3]=>14 ['B',3]=>24 ['C',3]=>24 ['A',4]=>42 ['B',4]=>83 ['C',4]=>83 ['D',4]=>48 ['F',4]=>106 ['A',5]=>132 ['B',5]=>293 ['C',5]=>293 ['D',5]=>167 ['A',6]=>429 ['B',6]=>1055 ['C',6]=>1055 ['D',6]=>593 ['E',6]=>662 ['A',7]=>1430 ['B',7]=>3860 ['C',7]=>3860 ['D',7]=>2144 ['E',7]=>2670 ['A',8]=>4862 ['B',8]=>14299 ['C',8]=>14299 ['D',8]=>7864 ['E',8]=>10846
search for individual values
searching the database for the individual values of this statistic
/ search for generating function
searching the database for statistics with the same generating function
click to show known generating functions       
Description
The number of fully commutative elements of the Weyl group of the given Cartan type.
An element $w$ of a Weyl group is fully commutative if any reduced expression for $w$ can be obtained
from any other one by using only commutation relations.
Code
def statistic(ct):
    return WeylGroup(ct).fully_commutative_elements().cardinality()

Created
Dec 16, 2020 at 19:35 by Martin Rubey
Updated
Dec 16, 2020 at 19:35 by Martin Rubey