***************************************************************************** * www.FindStat.org - The Combinatorial Statistic Finder * * * * Copyright (C) 2019 The FindStatCrew * * * * This information is distributed in the hope that it will be useful, * * but WITHOUT ANY WARRANTY; without even the implied warranty of * * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. * ***************************************************************************** ----------------------------------------------------------------------------- Statistic identifier: St001678 ----------------------------------------------------------------------------- Collection: Finite Cartan types ----------------------------------------------------------------------------- Description: The symmetric bilinear form applied to the highest root and the Weyl vector of a finite Cartan type. The Weyl vector is half the sum of the positive roots, or the sum of the fundamental weights. ----------------------------------------------------------------------------- References: ----------------------------------------------------------------------------- Code: def statistic(ct): # work around https://trac.sagemath.org/ticket/31410 R = RootSystem(ct) P = R.root_space() rho = 1/2*sum(P.positive_roots()) return (P.highest_root()).symmetric_form(rho) ----------------------------------------------------------------------------- Statistic values: ['A',1] => 1 ['A',2] => 2 ['B',2] => 4 ['G',2] => 9 ['A',3] => 3 ['B',3] => 8 ['C',3] => 6 ['A',4] => 4 ['B',4] => 12 ['C',4] => 8 ['D',4] => 5 ['F',4] => 16 ['A',5] => 5 ['B',5] => 16 ['C',5] => 10 ['D',5] => 7 ['A',6] => 6 ['B',6] => 20 ['C',6] => 12 ['D',6] => 9 ['E',6] => 11 ['A',7] => 7 ['B',7] => 24 ['C',7] => 14 ['D',7] => 11 ['E',7] => 17 ['A',8] => 8 ['B',8] => 28 ['C',8] => 16 ['D',8] => 13 ['E',8] => 29 ----------------------------------------------------------------------------- Created: Feb 06, 2021 at 21:45 by Martin Rubey ----------------------------------------------------------------------------- Last Updated: Feb 17, 2021 at 12:32 by Martin Rubey