Values
=>
Cc0020;cc-rep
([],1)=>0
([],2)=>0
([(0,1)],2)=>0
([],3)=>0
([(1,2)],3)=>0
([(0,2),(1,2)],3)=>0
([(0,1),(0,2),(1,2)],3)=>2
([],4)=>0
([(2,3)],4)=>0
([(1,3),(2,3)],4)=>0
([(0,3),(1,3),(2,3)],4)=>0
([(0,3),(1,2)],4)=>0
([(0,3),(1,2),(2,3)],4)=>0
([(1,2),(1,3),(2,3)],4)=>2
([(0,3),(1,2),(1,3),(2,3)],4)=>2
([(0,2),(0,3),(1,2),(1,3)],4)=>0
([(0,2),(0,3),(1,2),(1,3),(2,3)],4)=>3
([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)=>3
([],5)=>0
([(3,4)],5)=>0
([(2,4),(3,4)],5)=>0
([(1,4),(2,4),(3,4)],5)=>0
([(0,4),(1,4),(2,4),(3,4)],5)=>0
([(1,4),(2,3)],5)=>0
([(1,4),(2,3),(3,4)],5)=>0
([(0,1),(2,4),(3,4)],5)=>0
([(2,3),(2,4),(3,4)],5)=>2
([(0,4),(1,4),(2,3),(3,4)],5)=>0
([(1,4),(2,3),(2,4),(3,4)],5)=>2
([(0,4),(1,4),(2,3),(2,4),(3,4)],5)=>2
([(1,3),(1,4),(2,3),(2,4)],5)=>0
([(0,4),(1,2),(1,3),(2,4),(3,4)],5)=>0
([(1,3),(1,4),(2,3),(2,4),(3,4)],5)=>3
([(0,4),(1,3),(2,3),(2,4),(3,4)],5)=>2
([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)=>3
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5)=>0
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)=>3
([(0,4),(1,3),(2,3),(2,4)],5)=>0
([(0,1),(2,3),(2,4),(3,4)],5)=>2
([(0,3),(1,2),(1,4),(2,4),(3,4)],5)=>2
([(0,3),(0,4),(1,2),(1,4),(2,4),(3,4)],5)=>3
([(0,3),(0,4),(1,2),(1,4),(2,3)],5)=>0
([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)=>3
([(0,3),(0,4),(1,2),(1,4),(2,3),(2,4),(3,4)],5)=>4
([(0,4),(1,2),(1,3),(2,3),(2,4),(3,4)],5)=>3
([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)=>3
([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)=>3
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)=>4
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4)],5)=>3
([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,4),(3,4)],5)=>4
([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)=>4
([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)=>4
([],6)=>0
([(4,5)],6)=>0
([(3,5),(4,5)],6)=>0
([(2,5),(3,5),(4,5)],6)=>0
([(1,5),(2,5),(3,5),(4,5)],6)=>0
([(0,5),(1,5),(2,5),(3,5),(4,5)],6)=>0
([(2,5),(3,4)],6)=>0
([(2,5),(3,4),(4,5)],6)=>0
([(1,2),(3,5),(4,5)],6)=>0
([(3,4),(3,5),(4,5)],6)=>2
([(1,5),(2,5),(3,4),(4,5)],6)=>0
([(0,1),(2,5),(3,5),(4,5)],6)=>0
([(2,5),(3,4),(3,5),(4,5)],6)=>2
([(0,5),(1,5),(2,5),(3,4),(4,5)],6)=>0
([(1,5),(2,5),(3,4),(3,5),(4,5)],6)=>2
([(0,5),(1,5),(2,5),(3,4),(3,5),(4,5)],6)=>2
([(2,4),(2,5),(3,4),(3,5)],6)=>0
([(0,5),(1,5),(2,4),(3,4)],6)=>0
([(1,5),(2,3),(2,4),(3,5),(4,5)],6)=>0
([(0,5),(1,5),(2,3),(3,4),(4,5)],6)=>0
([(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>3
([(1,5),(2,4),(3,4),(3,5),(4,5)],6)=>2
([(0,5),(1,5),(2,4),(3,4),(4,5)],6)=>0
([(0,5),(1,5),(2,3),(2,4),(3,5),(4,5)],6)=>0
([(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>3
([(0,5),(1,5),(2,4),(3,4),(3,5),(4,5)],6)=>2
([(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>3
([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)=>0
([(0,5),(1,4),(2,4),(2,5),(3,4),(3,5)],6)=>0
([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)=>0
([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>3
([(0,5),(1,4),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>3
([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>3
([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)=>0
([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>3
([(0,5),(1,4),(2,3)],6)=>0
([(1,5),(2,4),(3,4),(3,5)],6)=>0
([(0,1),(2,5),(3,4),(4,5)],6)=>0
([(1,2),(3,4),(3,5),(4,5)],6)=>2
([(0,5),(1,4),(2,3),(3,5),(4,5)],6)=>0
([(1,4),(2,3),(2,5),(3,5),(4,5)],6)=>2
([(0,1),(2,5),(3,4),(3,5),(4,5)],6)=>2
([(0,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6)=>2
([(1,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6)=>3
([(0,5),(1,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6)=>3
([(1,4),(1,5),(2,3),(2,5),(3,4)],6)=>0
([(0,5),(1,4),(2,3),(2,4),(3,5),(4,5)],6)=>0
([(1,2),(1,5),(2,4),(3,4),(3,5),(4,5)],6)=>3
([(0,5),(1,2),(1,4),(2,3),(3,5),(4,5)],6)=>0
([(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6)=>3
([(0,5),(1,4),(2,3),(3,4),(3,5),(4,5)],6)=>2
([(0,5),(1,2),(1,5),(2,4),(3,4),(3,5),(4,5)],6)=>3
([(0,5),(1,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>3
([(1,4),(1,5),(2,3),(2,5),(3,4),(3,5),(4,5)],6)=>4
([(0,5),(1,4),(1,5),(2,3),(2,5),(3,4),(3,5),(4,5)],6)=>4
([(0,5),(1,4),(2,3),(2,4),(3,5)],6)=>0
([(0,1),(2,4),(2,5),(3,4),(3,5)],6)=>0
([(0,5),(1,5),(2,3),(2,4),(3,4)],6)=>2
([(0,4),(1,2),(1,3),(2,5),(3,5),(4,5)],6)=>0
([(0,4),(1,2),(1,5),(2,5),(3,4),(3,5)],6)=>2
([(0,4),(1,2),(2,5),(3,4),(3,5),(4,5)],6)=>2
([(0,1),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>3
([(0,4),(1,4),(2,3),(2,5),(3,5),(4,5)],6)=>2
([(0,3),(0,4),(1,2),(1,5),(2,5),(3,5),(4,5)],6)=>2
([(0,3),(1,4),(1,5),(2,4),(2,5),(3,5),(4,5)],6)=>3
([(0,4),(1,2),(1,5),(2,5),(3,4),(3,5),(4,5)],6)=>3
([(0,1),(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>3
([(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>3
([(0,5),(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6)=>3
([(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>3
([(0,5),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>3
([(0,1),(0,5),(1,4),(2,4),(2,5),(3,4),(3,5)],6)=>0
([(0,3),(0,5),(1,3),(1,5),(2,4),(2,5),(3,4),(4,5)],6)=>3
([(0,3),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>3
([(0,5),(1,4),(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6)=>4
([(0,1),(0,5),(1,4),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>3
([(0,4),(0,5),(1,4),(1,5),(2,3),(2,5),(3,4),(3,5),(4,5)],6)=>4
([(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5)],6)=>3
([(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>4
([(0,5),(1,4),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>3
([(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>4
([(0,4),(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5)],6)=>3
([(0,4),(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>4
([(0,5),(1,3),(1,4),(2,3),(2,4),(3,5),(4,5)],6)=>0
([(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5)],6)=>3
([(0,5),(1,3),(1,4),(2,3),(2,4),(2,5),(3,5),(4,5)],6)=>3
([(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,5),(4,5)],6)=>4
([(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,5),(4,5)],6)=>4
([(0,4),(0,5),(1,2),(1,3),(2,5),(3,4)],6)=>0
([(0,3),(0,5),(1,2),(1,5),(2,4),(3,4),(4,5)],6)=>4
([(0,5),(1,2),(1,4),(2,3),(3,4),(3,5),(4,5)],6)=>3
([(0,1),(0,2),(1,5),(2,4),(3,4),(3,5),(4,5)],6)=>4
([(0,5),(1,4),(2,3),(2,4),(2,5),(3,4),(3,5)],6)=>3
([(0,5),(1,3),(1,4),(2,4),(2,5),(3,4),(3,5)],6)=>3
([(0,1),(0,5),(1,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>4
([(0,4),(1,3),(1,5),(2,3),(2,4),(2,5),(3,5),(4,5)],6)=>4
([(0,4),(0,5),(1,3),(1,5),(2,3),(2,4),(3,5),(4,5)],6)=>4
([(0,4),(0,5),(1,3),(1,5),(2,3),(2,4),(2,5),(3,5),(4,5)],6)=>5
([(0,4),(0,5),(1,2),(1,3),(2,4),(2,5),(3,4),(3,5)],6)=>4
([(0,5),(1,2),(1,3),(1,4),(2,3),(2,4),(3,5),(4,5)],6)=>3
([(0,4),(0,5),(1,2),(1,3),(1,5),(2,4),(2,5),(3,4),(3,5)],6)=>4
([(0,4),(0,5),(1,2),(1,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>4
([(0,4),(0,5),(1,2),(1,3),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>5
([(0,5),(1,2),(1,3),(1,4),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>4
([(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>4
([(0,5),(1,3),(1,4),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>4
([(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>4
([(0,4),(0,5),(1,2),(1,4),(2,3),(2,5),(3,4),(3,5),(4,5)],6)=>4
([(0,4),(0,5),(1,3),(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6)=>4
([(0,4),(0,5),(1,3),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>5
([(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>5
([(0,3),(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5)],6)=>4
([(0,1),(0,2),(0,3),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>4
([(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5)],6)=>4
([(0,3),(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,5),(4,5)],6)=>5
([(0,3),(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>5
([(0,4),(0,5),(1,2),(1,3),(2,3),(4,5)],6)=>2
([(0,2),(1,4),(1,5),(2,3),(3,4),(3,5),(4,5)],6)=>3
([(0,1),(0,5),(1,5),(2,3),(2,4),(3,4),(4,5)],6)=>4
([(0,1),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>3
([(0,1),(0,5),(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6)=>4
([(0,1),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>3
([(0,1),(0,5),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>4
([(0,4),(0,5),(1,2),(1,3),(2,3),(2,5),(3,4),(4,5)],6)=>4
([(0,4),(0,5),(1,2),(1,3),(1,4),(2,3),(2,5),(3,5),(4,5)],6)=>4
([(0,3),(1,2),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>4
([(0,3),(0,5),(1,2),(1,4),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>4
([(0,1),(0,5),(1,4),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>4
([(0,3),(0,5),(1,2),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>5
([(0,3),(0,4),(0,5),(1,2),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)=>4
([(0,3),(0,4),(0,5),(1,2),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>5
([(0,4),(0,5),(1,3),(1,5),(2,3),(2,4),(2,5),(3,4)],6)=>4
([(0,1),(0,5),(1,4),(2,3),(2,4),(2,5),(3,4),(3,5)],6)=>4
([(0,3),(0,4),(1,2),(1,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6)=>4
([(0,3),(0,4),(0,5),(1,2),(1,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6)=>5
([(0,3),(0,4),(0,5),(1,2),(1,4),(1,5),(2,3),(2,5),(3,4)],6)=>4
([(0,1),(0,3),(0,5),(1,2),(1,4),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>4
([(0,4),(0,5),(1,2),(1,3),(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6)=>4
([(0,1),(0,4),(0,5),(1,3),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>5
([(0,3),(0,4),(0,5),(1,2),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>5
([(0,2),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6)=>4
([(0,4),(0,5),(1,2),(1,3),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>4
([(0,4),(0,5),(1,2),(1,3),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>5
([(0,5),(1,2),(1,3),(1,4),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>4
([(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>4
([(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>4
([(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>5
([(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>5
([(0,3),(0,4),(0,5),(1,2),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5)],6)=>4
([(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5)],6)=>4
([(0,1),(0,4),(0,5),(1,2),(1,3),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>4
([(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,5),(4,5)],6)=>5
([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)=>4
([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>5
([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>5
([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>5
search for individual values
searching the database for the individual values of this statistic
/
search for generating function
searching the database for statistics with the same generating function
Description
The length of a longest path in a graph such that after removing the paths edges, every vertex of the path has distance two from some other vertex of the path.
Put differently, for every vertex $v$ of such a path $P$, there is a vertex $w\in P$ and a vertex $u\not\in P$ such that $(v, u)$ and $(u, w)$ are edges.
The length of such a path is $0$ if the graph is a forest.
It is maximal, if and only if the graph is obtained from a graph $H$ with a Hamiltonian path by joining a new vertex to each of the vertices of $H$.
Put differently, for every vertex $v$ of such a path $P$, there is a vertex $w\in P$ and a vertex $u\not\in P$ such that $(v, u)$ and $(u, w)$ are edges.
The length of such a path is $0$ if the graph is a forest.
It is maximal, if and only if the graph is obtained from a graph $H$ with a Hamiltonian path by joining a new vertex to each of the vertices of $H$.
References
[1] user173856 Is every path with this property shorter than another path with the same endpoints? MathOverflow:319916
Code
def good_vertices(G, P): good = [] U = set(G.vertices()).difference(P) todo = [v for v in P] while todo: v = todo.pop() for w in P: if w != v and any(G.has_edge(u, v) and G.has_edge(u, w) for u in U): good.append(v) if w in todo: good.append(w) todo.remove(w) break return set(good) def statistic(G): lP = [P for u, v in Subsets(G, 2) for P in G.all_paths(u,v)] return max((len(P) for P in lP if len(good_vertices(G, P)) == len(P)), default=0)
Created
Feb 26, 2021 at 20:00 by Martin Rubey
Updated
Feb 28, 2021 at 16:17 by Martin Rubey
searching the database
Sorry, this statistic was not found in the database
or
add this statistic to the database – it's very simple and we need your support!