Identifier
- St001693: Set partitions ⟶ ℤ
Values
=>
Cc0009;cc-rep
{{1}}=>1
{{1,2}}=>1
{{1},{2}}=>0
{{1,2,3}}=>1
{{1,2},{3}}=>1
{{1,3},{2}}=>0
{{1},{2,3}}=>1
{{1},{2},{3}}=>0
{{1,2,3,4}}=>1
{{1,2,3},{4}}=>1
{{1,2,4},{3}}=>1
{{1,2},{3,4}}=>2
{{1,2},{3},{4}}=>1
{{1,3,4},{2}}=>1
{{1,3},{2,4}}=>2
{{1,3},{2},{4}}=>0
{{1,4},{2,3}}=>1
{{1},{2,3,4}}=>1
{{1},{2,3},{4}}=>1
{{1,4},{2},{3}}=>0
{{1},{2,4},{3}}=>0
{{1},{2},{3,4}}=>1
{{1},{2},{3},{4}}=>0
{{1,2,3,4,5}}=>1
{{1,2,3,4},{5}}=>1
{{1,2,3,5},{4}}=>1
{{1,2,3},{4,5}}=>2
{{1,2,3},{4},{5}}=>1
{{1,2,4,5},{3}}=>1
{{1,2,4},{3,5}}=>2
{{1,2,4},{3},{5}}=>1
{{1,2,5},{3,4}}=>2
{{1,2},{3,4,5}}=>2
{{1,2},{3,4},{5}}=>2
{{1,2,5},{3},{4}}=>1
{{1,2},{3,5},{4}}=>1
{{1,2},{3},{4,5}}=>2
{{1,2},{3},{4},{5}}=>1
{{1,3,4,5},{2}}=>1
{{1,3,4},{2,5}}=>2
{{1,3,4},{2},{5}}=>1
{{1,3,5},{2,4}}=>2
{{1,3},{2,4,5}}=>2
{{1,3},{2,4},{5}}=>2
{{1,3,5},{2},{4}}=>0
{{1,3},{2,5},{4}}=>1
{{1,3},{2},{4,5}}=>1
{{1,3},{2},{4},{5}}=>0
{{1,4,5},{2,3}}=>2
{{1,4},{2,3,5}}=>2
{{1,4},{2,3},{5}}=>1
{{1,5},{2,3,4}}=>1
{{1},{2,3,4,5}}=>1
{{1},{2,3,4},{5}}=>1
{{1,5},{2,3},{4}}=>1
{{1},{2,3,5},{4}}=>1
{{1},{2,3},{4,5}}=>2
{{1},{2,3},{4},{5}}=>1
{{1,4,5},{2},{3}}=>1
{{1,4},{2,5},{3}}=>2
{{1,4},{2},{3,5}}=>1
{{1,4},{2},{3},{5}}=>0
{{1,5},{2,4},{3}}=>0
{{1},{2,4,5},{3}}=>1
{{1},{2,4},{3,5}}=>2
{{1},{2,4},{3},{5}}=>0
{{1,5},{2},{3,4}}=>1
{{1},{2,5},{3,4}}=>1
{{1},{2},{3,4,5}}=>1
{{1},{2},{3,4},{5}}=>1
{{1,5},{2},{3},{4}}=>0
{{1},{2,5},{3},{4}}=>0
{{1},{2},{3,5},{4}}=>0
{{1},{2},{3},{4,5}}=>1
{{1},{2},{3},{4},{5}}=>0
{{1,2,3,4,5,6}}=>1
{{1,2,3,4,5},{6}}=>1
{{1,2,3,4,6},{5}}=>1
{{1,2,3,4},{5,6}}=>2
{{1,2,3,4},{5},{6}}=>1
{{1,2,3,5,6},{4}}=>1
{{1,2,3,5},{4,6}}=>2
{{1,2,3,5},{4},{6}}=>1
{{1,2,3,6},{4,5}}=>2
{{1,2,3},{4,5,6}}=>2
{{1,2,3},{4,5},{6}}=>2
{{1,2,3,6},{4},{5}}=>1
{{1,2,3},{4,6},{5}}=>1
{{1,2,3},{4},{5,6}}=>2
{{1,2,3},{4},{5},{6}}=>1
{{1,2,4,5,6},{3}}=>1
{{1,2,4,5},{3,6}}=>2
{{1,2,4,5},{3},{6}}=>1
{{1,2,4,6},{3,5}}=>2
{{1,2,4},{3,5,6}}=>2
{{1,2,4},{3,5},{6}}=>2
{{1,2,4,6},{3},{5}}=>1
{{1,2,4},{3,6},{5}}=>1
{{1,2,4},{3},{5,6}}=>2
{{1,2,4},{3},{5},{6}}=>1
{{1,2,5,6},{3,4}}=>2
{{1,2,5},{3,4,6}}=>2
{{1,2,5},{3,4},{6}}=>2
{{1,2,6},{3,4,5}}=>2
{{1,2},{3,4,5,6}}=>2
{{1,2},{3,4,5},{6}}=>2
{{1,2,6},{3,4},{5}}=>2
{{1,2},{3,4,6},{5}}=>2
{{1,2},{3,4},{5,6}}=>3
{{1,2},{3,4},{5},{6}}=>2
{{1,2,5,6},{3},{4}}=>1
{{1,2,5},{3,6},{4}}=>2
{{1,2,5},{3},{4,6}}=>1
{{1,2,5},{3},{4},{6}}=>1
{{1,2,6},{3,5},{4}}=>1
{{1,2},{3,5,6},{4}}=>2
{{1,2},{3,5},{4,6}}=>3
{{1,2},{3,5},{4},{6}}=>1
{{1,2,6},{3},{4,5}}=>2
{{1,2},{3,6},{4,5}}=>2
{{1,2},{3},{4,5,6}}=>2
{{1,2},{3},{4,5},{6}}=>2
{{1,2,6},{3},{4},{5}}=>1
{{1,2},{3,6},{4},{5}}=>1
{{1,2},{3},{4,6},{5}}=>1
{{1,2},{3},{4},{5,6}}=>2
{{1,2},{3},{4},{5},{6}}=>1
{{1,3,4,5,6},{2}}=>1
{{1,3,4,5},{2,6}}=>2
{{1,3,4,5},{2},{6}}=>1
{{1,3,4,6},{2,5}}=>2
{{1,3,4},{2,5,6}}=>2
{{1,3,4},{2,5},{6}}=>2
{{1,3,4,6},{2},{5}}=>1
{{1,3,4},{2,6},{5}}=>1
{{1,3,4},{2},{5,6}}=>2
{{1,3,4},{2},{5},{6}}=>1
{{1,3,5,6},{2,4}}=>2
{{1,3,5},{2,4,6}}=>2
{{1,3,5},{2,4},{6}}=>2
{{1,3,6},{2,4,5}}=>2
{{1,3},{2,4,5,6}}=>2
{{1,3},{2,4,5},{6}}=>2
{{1,3,6},{2,4},{5}}=>2
{{1,3},{2,4,6},{5}}=>2
{{1,3},{2,4},{5,6}}=>3
{{1,3},{2,4},{5},{6}}=>2
{{1,3,5,6},{2},{4}}=>1
{{1,3,5},{2,6},{4}}=>2
{{1,3,5},{2},{4,6}}=>2
{{1,3,5},{2},{4},{6}}=>0
{{1,3,6},{2,5},{4}}=>2
{{1,3},{2,5,6},{4}}=>1
{{1,3},{2,5},{4,6}}=>3
{{1,3},{2,5},{4},{6}}=>1
{{1,3,6},{2},{4,5}}=>1
{{1,3},{2,6},{4,5}}=>1
{{1,3},{2},{4,5,6}}=>1
{{1,3},{2},{4,5},{6}}=>1
{{1,3,6},{2},{4},{5}}=>0
{{1,3},{2,6},{4},{5}}=>0
{{1,3},{2},{4,6},{5}}=>0
{{1,3},{2},{4},{5,6}}=>1
{{1,3},{2},{4},{5},{6}}=>0
{{1,4,5,6},{2,3}}=>2
{{1,4,5},{2,3,6}}=>2
{{1,4,5},{2,3},{6}}=>2
{{1,4,6},{2,3,5}}=>2
{{1,4},{2,3,5,6}}=>2
{{1,4},{2,3,5},{6}}=>2
{{1,4,6},{2,3},{5}}=>1
{{1,4},{2,3,6},{5}}=>1
{{1,4},{2,3},{5,6}}=>2
{{1,4},{2,3},{5},{6}}=>1
{{1,5,6},{2,3,4}}=>2
{{1,5},{2,3,4,6}}=>2
{{1,5},{2,3,4},{6}}=>1
{{1,6},{2,3,4,5}}=>1
{{1},{2,3,4,5,6}}=>1
{{1},{2,3,4,5},{6}}=>1
{{1,6},{2,3,4},{5}}=>1
{{1},{2,3,4,6},{5}}=>1
{{1},{2,3,4},{5,6}}=>2
{{1},{2,3,4},{5},{6}}=>1
{{1,5,6},{2,3},{4}}=>2
{{1,5},{2,3,6},{4}}=>2
{{1,5},{2,3},{4,6}}=>1
{{1,5},{2,3},{4},{6}}=>1
{{1,6},{2,3,5},{4}}=>1
{{1},{2,3,5,6},{4}}=>1
{{1},{2,3,5},{4,6}}=>2
{{1},{2,3,5},{4},{6}}=>1
{{1,6},{2,3},{4,5}}=>2
{{1},{2,3,6},{4,5}}=>2
{{1},{2,3},{4,5,6}}=>2
{{1},{2,3},{4,5},{6}}=>2
{{1,6},{2,3},{4},{5}}=>1
{{1},{2,3,6},{4},{5}}=>1
{{1},{2,3},{4,6},{5}}=>1
{{1},{2,3},{4},{5,6}}=>2
{{1},{2,3},{4},{5},{6}}=>1
{{1,4,5,6},{2},{3}}=>1
{{1,4,5},{2,6},{3}}=>2
{{1,4,5},{2},{3,6}}=>1
{{1,4,5},{2},{3},{6}}=>1
{{1,4,6},{2,5},{3}}=>2
{{1,4},{2,5,6},{3}}=>2
{{1,4},{2,5},{3,6}}=>3
{{1,4},{2,5},{3},{6}}=>2
{{1,4,6},{2},{3,5}}=>2
{{1,4},{2,6},{3,5}}=>3
{{1,4},{2},{3,5,6}}=>1
{{1,4},{2},{3,5},{6}}=>1
{{1,4,6},{2},{3},{5}}=>0
{{1,4},{2,6},{3},{5}}=>1
{{1,4},{2},{3,6},{5}}=>0
{{1,4},{2},{3},{5,6}}=>1
{{1,4},{2},{3},{5},{6}}=>0
{{1,5,6},{2,4},{3}}=>1
{{1,5},{2,4,6},{3}}=>2
{{1,5},{2,4},{3,6}}=>3
{{1,5},{2,4},{3},{6}}=>0
{{1,6},{2,4,5},{3}}=>1
{{1},{2,4,5,6},{3}}=>1
{{1},{2,4,5},{3,6}}=>2
{{1},{2,4,5},{3},{6}}=>1
{{1,6},{2,4},{3,5}}=>2
{{1},{2,4,6},{3,5}}=>2
{{1},{2,4},{3,5,6}}=>2
{{1},{2,4},{3,5},{6}}=>2
{{1,6},{2,4},{3},{5}}=>0
{{1},{2,4,6},{3},{5}}=>0
{{1},{2,4},{3,6},{5}}=>1
{{1},{2,4},{3},{5,6}}=>1
{{1},{2,4},{3},{5},{6}}=>0
{{1,5,6},{2},{3,4}}=>2
{{1,5},{2,6},{3,4}}=>3
{{1,5},{2},{3,4,6}}=>1
{{1,5},{2},{3,4},{6}}=>1
{{1,6},{2,5},{3,4}}=>1
{{1},{2,5,6},{3,4}}=>2
{{1},{2,5},{3,4,6}}=>2
{{1},{2,5},{3,4},{6}}=>1
{{1,6},{2},{3,4,5}}=>1
{{1},{2,6},{3,4,5}}=>1
{{1},{2},{3,4,5,6}}=>1
{{1},{2},{3,4,5},{6}}=>1
{{1,6},{2},{3,4},{5}}=>1
{{1},{2,6},{3,4},{5}}=>1
{{1},{2},{3,4,6},{5}}=>1
{{1},{2},{3,4},{5,6}}=>2
{{1},{2},{3,4},{5},{6}}=>1
{{1,5,6},{2},{3},{4}}=>1
{{1,5},{2,6},{3},{4}}=>2
{{1,5},{2},{3,6},{4}}=>1
{{1,5},{2},{3},{4,6}}=>0
{{1,5},{2},{3},{4},{6}}=>0
{{1,6},{2,5},{3},{4}}=>0
{{1},{2,5,6},{3},{4}}=>1
{{1},{2,5},{3,6},{4}}=>2
{{1},{2,5},{3},{4,6}}=>1
{{1},{2,5},{3},{4},{6}}=>0
{{1,6},{2},{3,5},{4}}=>0
{{1},{2,6},{3,5},{4}}=>0
{{1},{2},{3,5,6},{4}}=>1
{{1},{2},{3,5},{4,6}}=>2
{{1},{2},{3,5},{4},{6}}=>0
{{1,6},{2},{3},{4,5}}=>1
{{1},{2,6},{3},{4,5}}=>1
{{1},{2},{3,6},{4,5}}=>1
{{1},{2},{3},{4,5,6}}=>1
{{1},{2},{3},{4,5},{6}}=>1
{{1,6},{2},{3},{4},{5}}=>0
{{1},{2,6},{3},{4},{5}}=>0
{{1},{2},{3,6},{4},{5}}=>0
{{1},{2},{3},{4,6},{5}}=>0
{{1},{2},{3},{4},{5,6}}=>1
{{1},{2},{3},{4},{5},{6}}=>0
{{1,2,3,4,5,6,7}}=>1
{{1,2,3,4,5,6},{7}}=>1
{{1,2,3,4,5,7},{6}}=>1
{{1,2,3,4,5},{6,7}}=>2
{{1,2,3,4,5},{6},{7}}=>1
{{1,2,3,4,6,7},{5}}=>1
{{1,2,3,4,6},{5,7}}=>2
{{1,2,3,4,6},{5},{7}}=>1
{{1,2,3,4,7},{5,6}}=>2
{{1,2,3,4},{5,6,7}}=>2
{{1,2,3,4},{5,6},{7}}=>2
{{1,2,3,4,7},{5},{6}}=>1
{{1,2,3,4},{5,7},{6}}=>1
{{1,2,3,4},{5},{6,7}}=>2
{{1,2,3,4},{5},{6},{7}}=>1
{{1,2,3,5,6,7},{4}}=>1
{{1,2,3,5,6},{4,7}}=>2
{{1,2,3,5,6},{4},{7}}=>1
{{1,2,3,5,7},{4,6}}=>2
{{1,2,3,5},{4,6,7}}=>2
{{1,2,3,5},{4,6},{7}}=>2
{{1,2,3,5,7},{4},{6}}=>1
{{1,2,3,5},{4,7},{6}}=>1
{{1,2,3,5},{4},{6,7}}=>2
{{1,2,3,5},{4},{6},{7}}=>1
{{1,2,3,6,7},{4,5}}=>2
{{1,2,3,6},{4,5,7}}=>2
{{1,2,3,6},{4,5},{7}}=>2
{{1,2,3,7},{4,5,6}}=>2
{{1,2,3},{4,5,6,7}}=>2
{{1,2,3},{4,5,6},{7}}=>2
{{1,2,3,7},{4,5},{6}}=>2
{{1,2,3},{4,5,7},{6}}=>2
{{1,2,3},{4,5},{6,7}}=>3
{{1,2,3},{4,5},{6},{7}}=>2
{{1,2,3,6,7},{4},{5}}=>1
{{1,2,3,6},{4,7},{5}}=>2
{{1,2,3,6},{4},{5,7}}=>1
{{1,2,3,6},{4},{5},{7}}=>1
{{1,2,3,7},{4,6},{5}}=>1
{{1,2,3},{4,6,7},{5}}=>2
{{1,2,3},{4,6},{5,7}}=>3
{{1,2,3},{4,6},{5},{7}}=>1
{{1,2,3,7},{4},{5,6}}=>2
{{1,2,3},{4,7},{5,6}}=>2
{{1,2,3},{4},{5,6,7}}=>2
{{1,2,3},{4},{5,6},{7}}=>2
{{1,2,3,7},{4},{5},{6}}=>1
{{1,2,3},{4,7},{5},{6}}=>1
{{1,2,3},{4},{5,7},{6}}=>1
{{1,2,3},{4},{5},{6,7}}=>2
{{1,2,3},{4},{5},{6},{7}}=>1
{{1,2,4,5,6,7},{3}}=>1
{{1,2,4,5,6},{3,7}}=>2
{{1,2,4,5,6},{3},{7}}=>1
{{1,2,4,5,7},{3,6}}=>2
{{1,2,4,5},{3,6,7}}=>2
{{1,2,4,5},{3,6},{7}}=>2
{{1,2,4,5,7},{3},{6}}=>1
{{1,2,4,5},{3,7},{6}}=>1
{{1,2,4,5},{3},{6,7}}=>2
{{1,2,4,5},{3},{6},{7}}=>1
{{1,2,4,6,7},{3,5}}=>2
{{1,2,4,6},{3,5,7}}=>2
{{1,2,4,6},{3,5},{7}}=>2
{{1,2,4,7},{3,5,6}}=>2
{{1,2,4},{3,5,6,7}}=>2
{{1,2,4},{3,5,6},{7}}=>2
{{1,2,4,7},{3,5},{6}}=>2
{{1,2,4},{3,5,7},{6}}=>2
{{1,2,4},{3,5},{6,7}}=>3
{{1,2,4},{3,5},{6},{7}}=>2
{{1,2,4,6,7},{3},{5}}=>1
{{1,2,4,6},{3,7},{5}}=>2
{{1,2,4,6},{3},{5,7}}=>2
{{1,2,4,6},{3},{5},{7}}=>1
{{1,2,4,7},{3,6},{5}}=>2
{{1,2,4},{3,6,7},{5}}=>2
{{1,2,4},{3,6},{5,7}}=>3
{{1,2,4},{3,6},{5},{7}}=>1
{{1,2,4,7},{3},{5,6}}=>2
{{1,2,4},{3,7},{5,6}}=>2
{{1,2,4},{3},{5,6,7}}=>2
{{1,2,4},{3},{5,6},{7}}=>2
{{1,2,4,7},{3},{5},{6}}=>1
{{1,2,4},{3,7},{5},{6}}=>1
{{1,2,4},{3},{5,7},{6}}=>1
{{1,2,4},{3},{5},{6,7}}=>2
{{1,2,4},{3},{5},{6},{7}}=>1
{{1,2,5,6,7},{3,4}}=>2
{{1,2,5,6},{3,4,7}}=>2
{{1,2,5,6},{3,4},{7}}=>2
{{1,2,5,7},{3,4,6}}=>2
{{1,2,5},{3,4,6,7}}=>2
{{1,2,5},{3,4,6},{7}}=>2
{{1,2,5,7},{3,4},{6}}=>2
{{1,2,5},{3,4,7},{6}}=>2
{{1,2,5},{3,4},{6,7}}=>3
{{1,2,5},{3,4},{6},{7}}=>2
{{1,2,6,7},{3,4,5}}=>2
{{1,2,6},{3,4,5,7}}=>2
{{1,2,6},{3,4,5},{7}}=>2
{{1,2,7},{3,4,5,6}}=>2
{{1,2},{3,4,5,6,7}}=>2
{{1,2},{3,4,5,6},{7}}=>2
{{1,2,7},{3,4,5},{6}}=>2
{{1,2},{3,4,5,7},{6}}=>2
{{1,2},{3,4,5},{6,7}}=>3
{{1,2},{3,4,5},{6},{7}}=>2
{{1,2,6,7},{3,4},{5}}=>2
{{1,2,6},{3,4,7},{5}}=>2
{{1,2,6},{3,4},{5,7}}=>2
{{1,2,6},{3,4},{5},{7}}=>2
{{1,2,7},{3,4,6},{5}}=>2
{{1,2},{3,4,6,7},{5}}=>2
{{1,2},{3,4,6},{5,7}}=>3
{{1,2},{3,4,6},{5},{7}}=>2
{{1,2,7},{3,4},{5,6}}=>3
{{1,2},{3,4,7},{5,6}}=>3
{{1,2},{3,4},{5,6,7}}=>3
{{1,2},{3,4},{5,6},{7}}=>3
{{1,2,7},{3,4},{5},{6}}=>2
{{1,2},{3,4,7},{5},{6}}=>2
{{1,2},{3,4},{5,7},{6}}=>2
{{1,2},{3,4},{5},{6,7}}=>3
{{1,2},{3,4},{5},{6},{7}}=>2
{{1,2,5,6,7},{3},{4}}=>1
{{1,2,5,6},{3,7},{4}}=>2
{{1,2,5,6},{3},{4,7}}=>1
{{1,2,5,6},{3},{4},{7}}=>1
{{1,2,5,7},{3,6},{4}}=>2
{{1,2,5},{3,6,7},{4}}=>2
{{1,2,5},{3,6},{4,7}}=>3
{{1,2,5},{3,6},{4},{7}}=>2
{{1,2,5,7},{3},{4,6}}=>2
{{1,2,5},{3,7},{4,6}}=>3
{{1,2,5},{3},{4,6,7}}=>2
{{1,2,5},{3},{4,6},{7}}=>1
{{1,2,5,7},{3},{4},{6}}=>1
{{1,2,5},{3,7},{4},{6}}=>1
{{1,2,5},{3},{4,7},{6}}=>1
{{1,2,5},{3},{4},{6,7}}=>2
{{1,2,5},{3},{4},{6},{7}}=>1
{{1,2,6,7},{3,5},{4}}=>1
{{1,2,6},{3,5,7},{4}}=>2
{{1,2,6},{3,5},{4,7}}=>3
{{1,2,6},{3,5},{4},{7}}=>1
{{1,2,7},{3,5,6},{4}}=>2
{{1,2},{3,5,6,7},{4}}=>2
{{1,2},{3,5,6},{4,7}}=>3
{{1,2},{3,5,6},{4},{7}}=>2
{{1,2,7},{3,5},{4,6}}=>3
{{1,2},{3,5,7},{4,6}}=>3
{{1,2},{3,5},{4,6,7}}=>3
{{1,2},{3,5},{4,6},{7}}=>3
{{1,2,7},{3,5},{4},{6}}=>1
{{1,2},{3,5,7},{4},{6}}=>1
{{1,2},{3,5},{4,7},{6}}=>2
{{1,2},{3,5},{4},{6,7}}=>2
{{1,2},{3,5},{4},{6},{7}}=>1
{{1,2,6,7},{3},{4,5}}=>2
{{1,2,6},{3,7},{4,5}}=>3
{{1,2,6},{3},{4,5,7}}=>2
{{1,2,6},{3},{4,5},{7}}=>2
{{1,2,7},{3,6},{4,5}}=>2
{{1,2},{3,6,7},{4,5}}=>3
{{1,2},{3,6},{4,5,7}}=>3
{{1,2},{3,6},{4,5},{7}}=>2
{{1,2,7},{3},{4,5,6}}=>2
{{1,2},{3,7},{4,5,6}}=>2
{{1,2},{3},{4,5,6,7}}=>2
{{1,2},{3},{4,5,6},{7}}=>2
{{1,2,7},{3},{4,5},{6}}=>2
{{1,2},{3,7},{4,5},{6}}=>2
{{1,2},{3},{4,5,7},{6}}=>2
{{1,2},{3},{4,5},{6,7}}=>3
{{1,2},{3},{4,5},{6},{7}}=>2
{{1,2,6,7},{3},{4},{5}}=>1
{{1,2,6},{3,7},{4},{5}}=>2
{{1,2,6},{3},{4,7},{5}}=>1
{{1,2,6},{3},{4},{5,7}}=>1
{{1,2,6},{3},{4},{5},{7}}=>1
{{1,2,7},{3,6},{4},{5}}=>1
{{1,2},{3,6,7},{4},{5}}=>2
{{1,2},{3,6},{4,7},{5}}=>3
{{1,2},{3,6},{4},{5,7}}=>2
{{1,2},{3,6},{4},{5},{7}}=>1
{{1,2,7},{3},{4,6},{5}}=>1
{{1,2},{3,7},{4,6},{5}}=>1
{{1,2},{3},{4,6,7},{5}}=>2
{{1,2},{3},{4,6},{5,7}}=>3
{{1,2},{3},{4,6},{5},{7}}=>1
{{1,2,7},{3},{4},{5,6}}=>2
{{1,2},{3,7},{4},{5,6}}=>2
{{1,2},{3},{4,7},{5,6}}=>2
{{1,2},{3},{4},{5,6,7}}=>2
{{1,2},{3},{4},{5,6},{7}}=>2
{{1,2,7},{3},{4},{5},{6}}=>1
{{1,2},{3,7},{4},{5},{6}}=>1
{{1,2},{3},{4,7},{5},{6}}=>1
{{1,2},{3},{4},{5,7},{6}}=>1
{{1,2},{3},{4},{5},{6,7}}=>2
{{1,2},{3},{4},{5},{6},{7}}=>1
{{1,3,4,5,6,7},{2}}=>1
{{1,3,4,5,6},{2,7}}=>2
{{1,3,4,5,6},{2},{7}}=>1
{{1,3,4,5,7},{2,6}}=>2
{{1,3,4,5},{2,6,7}}=>2
{{1,3,4,5},{2,6},{7}}=>2
{{1,3,4,5,7},{2},{6}}=>1
{{1,3,4,5},{2,7},{6}}=>1
{{1,3,4,5},{2},{6,7}}=>2
{{1,3,4,5},{2},{6},{7}}=>1
{{1,3,4,6,7},{2,5}}=>2
{{1,3,4,6},{2,5,7}}=>2
{{1,3,4,6},{2,5},{7}}=>2
{{1,3,4,7},{2,5,6}}=>2
{{1,3,4},{2,5,6,7}}=>2
{{1,3,4},{2,5,6},{7}}=>2
{{1,3,4,7},{2,5},{6}}=>2
{{1,3,4},{2,5,7},{6}}=>2
{{1,3,4},{2,5},{6,7}}=>3
{{1,3,4},{2,5},{6},{7}}=>2
{{1,3,4,6,7},{2},{5}}=>1
{{1,3,4,6},{2,7},{5}}=>2
{{1,3,4,6},{2},{5,7}}=>2
{{1,3,4,6},{2},{5},{7}}=>1
{{1,3,4,7},{2,6},{5}}=>2
{{1,3,4},{2,6,7},{5}}=>2
{{1,3,4},{2,6},{5,7}}=>3
{{1,3,4},{2,6},{5},{7}}=>1
{{1,3,4,7},{2},{5,6}}=>2
{{1,3,4},{2,7},{5,6}}=>2
{{1,3,4},{2},{5,6,7}}=>2
{{1,3,4},{2},{5,6},{7}}=>2
{{1,3,4,7},{2},{5},{6}}=>1
{{1,3,4},{2,7},{5},{6}}=>1
{{1,3,4},{2},{5,7},{6}}=>1
{{1,3,4},{2},{5},{6,7}}=>2
{{1,3,4},{2},{5},{6},{7}}=>1
{{1,3,5,6,7},{2,4}}=>2
{{1,3,5,6},{2,4,7}}=>2
{{1,3,5,6},{2,4},{7}}=>2
{{1,3,5,7},{2,4,6}}=>2
{{1,3,5},{2,4,6,7}}=>2
{{1,3,5},{2,4,6},{7}}=>2
{{1,3,5,7},{2,4},{6}}=>2
{{1,3,5},{2,4,7},{6}}=>2
{{1,3,5},{2,4},{6,7}}=>3
{{1,3,5},{2,4},{6},{7}}=>2
{{1,3,6,7},{2,4,5}}=>2
{{1,3,6},{2,4,5,7}}=>2
{{1,3,6},{2,4,5},{7}}=>2
{{1,3,7},{2,4,5,6}}=>2
{{1,3},{2,4,5,6,7}}=>2
{{1,3},{2,4,5,6},{7}}=>2
{{1,3,7},{2,4,5},{6}}=>2
{{1,3},{2,4,5,7},{6}}=>2
{{1,3},{2,4,5},{6,7}}=>3
{{1,3},{2,4,5},{6},{7}}=>2
{{1,3,6,7},{2,4},{5}}=>2
{{1,3,6},{2,4,7},{5}}=>2
{{1,3,6},{2,4},{5,7}}=>3
{{1,3,6},{2,4},{5},{7}}=>2
{{1,3,7},{2,4,6},{5}}=>2
{{1,3},{2,4,6,7},{5}}=>2
{{1,3},{2,4,6},{5,7}}=>2
{{1,3},{2,4,6},{5},{7}}=>2
{{1,3,7},{2,4},{5,6}}=>3
{{1,3},{2,4,7},{5,6}}=>3
{{1,3},{2,4},{5,6,7}}=>3
{{1,3},{2,4},{5,6},{7}}=>3
{{1,3,7},{2,4},{5},{6}}=>2
{{1,3},{2,4,7},{5},{6}}=>2
{{1,3},{2,4},{5,7},{6}}=>2
{{1,3},{2,4},{5},{6,7}}=>3
{{1,3},{2,4},{5},{6},{7}}=>2
{{1,3,5,6,7},{2},{4}}=>1
{{1,3,5,6},{2,7},{4}}=>2
{{1,3,5,6},{2},{4,7}}=>2
{{1,3,5,6},{2},{4},{7}}=>1
{{1,3,5,7},{2,6},{4}}=>2
{{1,3,5},{2,6,7},{4}}=>2
{{1,3,5},{2,6},{4,7}}=>3
{{1,3,5},{2,6},{4},{7}}=>2
{{1,3,5,7},{2},{4,6}}=>2
{{1,3,5},{2,7},{4,6}}=>3
{{1,3,5},{2},{4,6,7}}=>2
{{1,3,5},{2},{4,6},{7}}=>2
{{1,3,5,7},{2},{4},{6}}=>0
{{1,3,5},{2,7},{4},{6}}=>1
{{1,3,5},{2},{4,7},{6}}=>1
{{1,3,5},{2},{4},{6,7}}=>1
{{1,3,5},{2},{4},{6},{7}}=>0
{{1,3,6,7},{2,5},{4}}=>2
{{1,3,6},{2,5,7},{4}}=>2
{{1,3,6},{2,5},{4,7}}=>3
{{1,3,6},{2,5},{4},{7}}=>2
{{1,3,7},{2,5,6},{4}}=>2
{{1,3},{2,5,6,7},{4}}=>1
{{1,3},{2,5,6},{4,7}}=>3
{{1,3},{2,5,6},{4},{7}}=>1
{{1,3,7},{2,5},{4,6}}=>3
{{1,3},{2,5,7},{4,6}}=>3
{{1,3},{2,5},{4,6,7}}=>3
{{1,3},{2,5},{4,6},{7}}=>3
{{1,3,7},{2,5},{4},{6}}=>1
{{1,3},{2,5,7},{4},{6}}=>1
{{1,3},{2,5},{4,7},{6}}=>2
{{1,3},{2,5},{4},{6,7}}=>2
{{1,3},{2,5},{4},{6},{7}}=>1
{{1,3,6,7},{2},{4,5}}=>2
{{1,3,6},{2,7},{4,5}}=>3
{{1,3,6},{2},{4,5,7}}=>2
{{1,3,6},{2},{4,5},{7}}=>1
{{1,3,7},{2,6},{4,5}}=>3
{{1,3},{2,6,7},{4,5}}=>2
{{1,3},{2,6},{4,5,7}}=>3
{{1,3},{2,6},{4,5},{7}}=>1
{{1,3,7},{2},{4,5,6}}=>1
{{1,3},{2,7},{4,5,6}}=>1
{{1,3},{2},{4,5,6,7}}=>1
{{1,3},{2},{4,5,6},{7}}=>1
{{1,3,7},{2},{4,5},{6}}=>1
{{1,3},{2,7},{4,5},{6}}=>1
{{1,3},{2},{4,5,7},{6}}=>1
{{1,3},{2},{4,5},{6,7}}=>2
{{1,3},{2},{4,5},{6},{7}}=>1
{{1,3,6,7},{2},{4},{5}}=>1
{{1,3,6},{2,7},{4},{5}}=>2
{{1,3,6},{2},{4,7},{5}}=>2
{{1,3,6},{2},{4},{5,7}}=>1
{{1,3,6},{2},{4},{5},{7}}=>0
{{1,3,7},{2,6},{4},{5}}=>2
{{1,3},{2,6,7},{4},{5}}=>1
{{1,3},{2,6},{4,7},{5}}=>3
{{1,3},{2,6},{4},{5,7}}=>2
{{1,3},{2,6},{4},{5},{7}}=>0
{{1,3,7},{2},{4,6},{5}}=>0
{{1,3},{2,7},{4,6},{5}}=>0
{{1,3},{2},{4,6,7},{5}}=>1
{{1,3},{2},{4,6},{5,7}}=>2
{{1,3},{2},{4,6},{5},{7}}=>0
{{1,3,7},{2},{4},{5,6}}=>1
{{1,3},{2,7},{4},{5,6}}=>1
{{1,3},{2},{4,7},{5,6}}=>1
{{1,3},{2},{4},{5,6,7}}=>1
{{1,3},{2},{4},{5,6},{7}}=>1
{{1,3,7},{2},{4},{5},{6}}=>0
{{1,3},{2,7},{4},{5},{6}}=>0
{{1,3},{2},{4,7},{5},{6}}=>0
{{1,3},{2},{4},{5,7},{6}}=>0
{{1,3},{2},{4},{5},{6,7}}=>1
{{1,3},{2},{4},{5},{6},{7}}=>0
{{1,4,5,6,7},{2,3}}=>2
{{1,4,5,6},{2,3,7}}=>2
{{1,4,5,6},{2,3},{7}}=>2
{{1,4,5,7},{2,3,6}}=>2
{{1,4,5},{2,3,6,7}}=>2
{{1,4,5},{2,3,6},{7}}=>2
{{1,4,5,7},{2,3},{6}}=>2
{{1,4,5},{2,3,7},{6}}=>2
{{1,4,5},{2,3},{6,7}}=>3
{{1,4,5},{2,3},{6},{7}}=>2
{{1,4,6,7},{2,3,5}}=>2
{{1,4,6},{2,3,5,7}}=>2
{{1,4,6},{2,3,5},{7}}=>2
{{1,4,7},{2,3,5,6}}=>2
{{1,4},{2,3,5,6,7}}=>2
{{1,4},{2,3,5,6},{7}}=>2
{{1,4,7},{2,3,5},{6}}=>2
{{1,4},{2,3,5,7},{6}}=>2
{{1,4},{2,3,5},{6,7}}=>3
{{1,4},{2,3,5},{6},{7}}=>2
{{1,4,6,7},{2,3},{5}}=>2
{{1,4,6},{2,3,7},{5}}=>2
{{1,4,6},{2,3},{5,7}}=>3
{{1,4,6},{2,3},{5},{7}}=>1
{{1,4,7},{2,3,6},{5}}=>2
{{1,4},{2,3,6,7},{5}}=>1
{{1,4},{2,3,6},{5,7}}=>3
{{1,4},{2,3,6},{5},{7}}=>1
{{1,4,7},{2,3},{5,6}}=>2
{{1,4},{2,3,7},{5,6}}=>2
{{1,4},{2,3},{5,6,7}}=>2
{{1,4},{2,3},{5,6},{7}}=>2
{{1,4,7},{2,3},{5},{6}}=>1
{{1,4},{2,3,7},{5},{6}}=>1
{{1,4},{2,3},{5,7},{6}}=>1
{{1,4},{2,3},{5},{6,7}}=>2
{{1,4},{2,3},{5},{6},{7}}=>1
{{1,5,6,7},{2,3,4}}=>2
{{1,5,6},{2,3,4,7}}=>2
{{1,5,6},{2,3,4},{7}}=>2
{{1,5,7},{2,3,4,6}}=>2
{{1,5},{2,3,4,6,7}}=>2
{{1,5},{2,3,4,6},{7}}=>2
{{1,5,7},{2,3,4},{6}}=>1
{{1,5},{2,3,4,7},{6}}=>1
{{1,5},{2,3,4},{6,7}}=>2
{{1,5},{2,3,4},{6},{7}}=>1
{{1,6,7},{2,3,4,5}}=>2
{{1,6},{2,3,4,5,7}}=>2
{{1,6},{2,3,4,5},{7}}=>1
{{1,7},{2,3,4,5,6}}=>1
{{1},{2,3,4,5,6,7}}=>1
{{1},{2,3,4,5,6},{7}}=>1
{{1,7},{2,3,4,5},{6}}=>1
{{1},{2,3,4,5,7},{6}}=>1
{{1},{2,3,4,5},{6,7}}=>2
{{1},{2,3,4,5},{6},{7}}=>1
{{1,6,7},{2,3,4},{5}}=>2
{{1,6},{2,3,4,7},{5}}=>2
{{1,6},{2,3,4},{5,7}}=>1
{{1,6},{2,3,4},{5},{7}}=>1
{{1,7},{2,3,4,6},{5}}=>1
{{1},{2,3,4,6,7},{5}}=>1
{{1},{2,3,4,6},{5,7}}=>2
{{1},{2,3,4,6},{5},{7}}=>1
{{1,7},{2,3,4},{5,6}}=>2
{{1},{2,3,4,7},{5,6}}=>2
{{1},{2,3,4},{5,6,7}}=>2
{{1},{2,3,4},{5,6},{7}}=>2
{{1,7},{2,3,4},{5},{6}}=>1
{{1},{2,3,4,7},{5},{6}}=>1
{{1},{2,3,4},{5,7},{6}}=>1
{{1},{2,3,4},{5},{6,7}}=>2
{{1},{2,3,4},{5},{6},{7}}=>1
{{1,5,6,7},{2,3},{4}}=>2
{{1,5,6},{2,3,7},{4}}=>2
{{1,5,6},{2,3},{4,7}}=>2
{{1,5,6},{2,3},{4},{7}}=>2
{{1,5,7},{2,3,6},{4}}=>2
{{1,5},{2,3,6,7},{4}}=>2
{{1,5},{2,3,6},{4,7}}=>3
{{1,5},{2,3,6},{4},{7}}=>2
{{1,5,7},{2,3},{4,6}}=>3
{{1,5},{2,3,7},{4,6}}=>3
{{1,5},{2,3},{4,6,7}}=>2
{{1,5},{2,3},{4,6},{7}}=>1
{{1,5,7},{2,3},{4},{6}}=>1
{{1,5},{2,3,7},{4},{6}}=>1
{{1,5},{2,3},{4,7},{6}}=>1
{{1,5},{2,3},{4},{6,7}}=>2
{{1,5},{2,3},{4},{6},{7}}=>1
{{1,6,7},{2,3,5},{4}}=>2
{{1,6},{2,3,5,7},{4}}=>2
{{1,6},{2,3,5},{4,7}}=>3
{{1,6},{2,3,5},{4},{7}}=>1
{{1,7},{2,3,5,6},{4}}=>1
{{1},{2,3,5,6,7},{4}}=>1
{{1},{2,3,5,6},{4,7}}=>2
{{1},{2,3,5,6},{4},{7}}=>1
{{1,7},{2,3,5},{4,6}}=>2
{{1},{2,3,5,7},{4,6}}=>2
{{1},{2,3,5},{4,6,7}}=>2
{{1},{2,3,5},{4,6},{7}}=>2
{{1,7},{2,3,5},{4},{6}}=>1
{{1},{2,3,5,7},{4},{6}}=>1
{{1},{2,3,5},{4,7},{6}}=>1
{{1},{2,3,5},{4},{6,7}}=>2
{{1},{2,3,5},{4},{6},{7}}=>1
{{1,6,7},{2,3},{4,5}}=>3
{{1,6},{2,3,7},{4,5}}=>3
{{1,6},{2,3},{4,5,7}}=>2
{{1,6},{2,3},{4,5},{7}}=>2
{{1,7},{2,3,6},{4,5}}=>2
{{1},{2,3,6,7},{4,5}}=>2
{{1},{2,3,6},{4,5,7}}=>2
{{1},{2,3,6},{4,5},{7}}=>2
{{1,7},{2,3},{4,5,6}}=>2
{{1},{2,3,7},{4,5,6}}=>2
{{1},{2,3},{4,5,6,7}}=>2
{{1},{2,3},{4,5,6},{7}}=>2
{{1,7},{2,3},{4,5},{6}}=>2
{{1},{2,3,7},{4,5},{6}}=>2
{{1},{2,3},{4,5,7},{6}}=>2
{{1},{2,3},{4,5},{6,7}}=>3
{{1},{2,3},{4,5},{6},{7}}=>2
{{1,6,7},{2,3},{4},{5}}=>2
{{1,6},{2,3,7},{4},{5}}=>2
{{1,6},{2,3},{4,7},{5}}=>1
{{1,6},{2,3},{4},{5,7}}=>1
{{1,6},{2,3},{4},{5},{7}}=>1
{{1,7},{2,3,6},{4},{5}}=>1
{{1},{2,3,6,7},{4},{5}}=>1
{{1},{2,3,6},{4,7},{5}}=>2
{{1},{2,3,6},{4},{5,7}}=>1
{{1},{2,3,6},{4},{5},{7}}=>1
{{1,7},{2,3},{4,6},{5}}=>1
{{1},{2,3,7},{4,6},{5}}=>1
{{1},{2,3},{4,6,7},{5}}=>2
{{1},{2,3},{4,6},{5,7}}=>3
{{1},{2,3},{4,6},{5},{7}}=>1
{{1,7},{2,3},{4},{5,6}}=>2
{{1},{2,3,7},{4},{5,6}}=>2
{{1},{2,3},{4,7},{5,6}}=>2
{{1},{2,3},{4},{5,6,7}}=>2
{{1},{2,3},{4},{5,6},{7}}=>2
{{1,7},{2,3},{4},{5},{6}}=>1
{{1},{2,3,7},{4},{5},{6}}=>1
{{1},{2,3},{4,7},{5},{6}}=>1
{{1},{2,3},{4},{5,7},{6}}=>1
{{1},{2,3},{4},{5},{6,7}}=>2
{{1},{2,3},{4},{5},{6},{7}}=>1
{{1,4,5,6,7},{2},{3}}=>1
{{1,4,5,6},{2,7},{3}}=>2
{{1,4,5,6},{2},{3,7}}=>1
{{1,4,5,6},{2},{3},{7}}=>1
{{1,4,5,7},{2,6},{3}}=>2
{{1,4,5},{2,6,7},{3}}=>2
{{1,4,5},{2,6},{3,7}}=>3
{{1,4,5},{2,6},{3},{7}}=>2
{{1,4,5,7},{2},{3,6}}=>2
{{1,4,5},{2,7},{3,6}}=>3
{{1,4,5},{2},{3,6,7}}=>2
{{1,4,5},{2},{3,6},{7}}=>1
{{1,4,5,7},{2},{3},{6}}=>1
{{1,4,5},{2,7},{3},{6}}=>1
{{1,4,5},{2},{3,7},{6}}=>1
{{1,4,5},{2},{3},{6,7}}=>2
{{1,4,5},{2},{3},{6},{7}}=>1
{{1,4,6,7},{2,5},{3}}=>2
{{1,4,6},{2,5,7},{3}}=>2
{{1,4,6},{2,5},{3,7}}=>3
{{1,4,6},{2,5},{3},{7}}=>2
{{1,4,7},{2,5,6},{3}}=>2
{{1,4},{2,5,6,7},{3}}=>2
{{1,4},{2,5,6},{3,7}}=>3
{{1,4},{2,5,6},{3},{7}}=>2
{{1,4,7},{2,5},{3,6}}=>3
{{1,4},{2,5,7},{3,6}}=>3
{{1,4},{2,5},{3,6,7}}=>3
{{1,4},{2,5},{3,6},{7}}=>3
{{1,4,7},{2,5},{3},{6}}=>2
{{1,4},{2,5,7},{3},{6}}=>2
{{1,4},{2,5},{3,7},{6}}=>2
{{1,4},{2,5},{3},{6,7}}=>3
{{1,4},{2,5},{3},{6},{7}}=>2
{{1,4,6,7},{2},{3,5}}=>2
{{1,4,6},{2,7},{3,5}}=>2
{{1,4,6},{2},{3,5,7}}=>2
{{1,4,6},{2},{3,5},{7}}=>2
{{1,4,7},{2,6},{3,5}}=>3
{{1,4},{2,6,7},{3,5}}=>3
{{1,4},{2,6},{3,5,7}}=>3
{{1,4},{2,6},{3,5},{7}}=>3
{{1,4,7},{2},{3,5,6}}=>2
{{1,4},{2,7},{3,5,6}}=>3
{{1,4},{2},{3,5,6,7}}=>1
{{1,4},{2},{3,5,6},{7}}=>1
{{1,4,7},{2},{3,5},{6}}=>1
{{1,4},{2,7},{3,5},{6}}=>2
{{1,4},{2},{3,5,7},{6}}=>1
{{1,4},{2},{3,5},{6,7}}=>2
{{1,4},{2},{3,5},{6},{7}}=>1
{{1,4,6,7},{2},{3},{5}}=>1
{{1,4,6},{2,7},{3},{5}}=>2
{{1,4,6},{2},{3,7},{5}}=>1
{{1,4,6},{2},{3},{5,7}}=>2
{{1,4,6},{2},{3},{5},{7}}=>0
{{1,4,7},{2,6},{3},{5}}=>1
{{1,4},{2,6,7},{3},{5}}=>1
{{1,4},{2,6},{3,7},{5}}=>3
{{1,4},{2,6},{3},{5,7}}=>3
{{1,4},{2,6},{3},{5},{7}}=>1
{{1,4,7},{2},{3,6},{5}}=>2
{{1,4},{2,7},{3,6},{5}}=>3
{{1,4},{2},{3,6,7},{5}}=>1
{{1,4},{2},{3,6},{5,7}}=>2
{{1,4},{2},{3,6},{5},{7}}=>0
{{1,4,7},{2},{3},{5,6}}=>1
{{1,4},{2,7},{3},{5,6}}=>1
{{1,4},{2},{3,7},{5,6}}=>1
{{1,4},{2},{3},{5,6,7}}=>1
{{1,4},{2},{3},{5,6},{7}}=>1
{{1,4,7},{2},{3},{5},{6}}=>0
{{1,4},{2,7},{3},{5},{6}}=>0
{{1,4},{2},{3,7},{5},{6}}=>0
{{1,4},{2},{3},{5,7},{6}}=>0
{{1,4},{2},{3},{5},{6,7}}=>1
{{1,4},{2},{3},{5},{6},{7}}=>0
{{1,5,6,7},{2,4},{3}}=>1
{{1,5,6},{2,4,7},{3}}=>2
{{1,5,6},{2,4},{3,7}}=>3
{{1,5,6},{2,4},{3},{7}}=>1
{{1,5,7},{2,4,6},{3}}=>2
{{1,5},{2,4,6,7},{3}}=>2
{{1,5},{2,4,6},{3,7}}=>2
{{1,5},{2,4,6},{3},{7}}=>2
{{1,5,7},{2,4},{3,6}}=>3
{{1,5},{2,4,7},{3,6}}=>3
{{1,5},{2,4},{3,6,7}}=>3
{{1,5},{2,4},{3,6},{7}}=>3
{{1,5,7},{2,4},{3},{6}}=>0
{{1,5},{2,4,7},{3},{6}}=>1
{{1,5},{2,4},{3,7},{6}}=>2
{{1,5},{2,4},{3},{6,7}}=>1
{{1,5},{2,4},{3},{6},{7}}=>0
{{1,6,7},{2,4,5},{3}}=>2
{{1,6},{2,4,5,7},{3}}=>2
{{1,6},{2,4,5},{3,7}}=>3
{{1,6},{2,4,5},{3},{7}}=>1
{{1,7},{2,4,5,6},{3}}=>1
{{1},{2,4,5,6,7},{3}}=>1
{{1},{2,4,5,6},{3,7}}=>2
{{1},{2,4,5,6},{3},{7}}=>1
{{1,7},{2,4,5},{3,6}}=>2
{{1},{2,4,5,7},{3,6}}=>2
{{1},{2,4,5},{3,6,7}}=>2
{{1},{2,4,5},{3,6},{7}}=>2
{{1,7},{2,4,5},{3},{6}}=>1
{{1},{2,4,5,7},{3},{6}}=>1
{{1},{2,4,5},{3,7},{6}}=>1
{{1},{2,4,5},{3},{6,7}}=>2
{{1},{2,4,5},{3},{6},{7}}=>1
{{1,6,7},{2,4},{3,5}}=>3
{{1,6},{2,4,7},{3,5}}=>2
{{1,6},{2,4},{3,5,7}}=>3
{{1,6},{2,4},{3,5},{7}}=>2
{{1,7},{2,4,6},{3,5}}=>2
{{1},{2,4,6,7},{3,5}}=>2
{{1},{2,4,6},{3,5,7}}=>2
{{1},{2,4,6},{3,5},{7}}=>2
{{1,7},{2,4},{3,5,6}}=>2
{{1},{2,4,7},{3,5,6}}=>2
{{1},{2,4},{3,5,6,7}}=>2
{{1},{2,4},{3,5,6},{7}}=>2
{{1,7},{2,4},{3,5},{6}}=>2
{{1},{2,4,7},{3,5},{6}}=>2
{{1},{2,4},{3,5,7},{6}}=>2
{{1},{2,4},{3,5},{6,7}}=>3
{{1},{2,4},{3,5},{6},{7}}=>2
{{1,6,7},{2,4},{3},{5}}=>1
{{1,6},{2,4,7},{3},{5}}=>2
{{1,6},{2,4},{3,7},{5}}=>3
{{1,6},{2,4},{3},{5,7}}=>0
{{1,6},{2,4},{3},{5},{7}}=>0
{{1,7},{2,4,6},{3},{5}}=>0
{{1},{2,4,6,7},{3},{5}}=>1
{{1},{2,4,6},{3,7},{5}}=>2
{{1},{2,4,6},{3},{5,7}}=>2
{{1},{2,4,6},{3},{5},{7}}=>0
{{1,7},{2,4},{3,6},{5}}=>1
{{1},{2,4,7},{3,6},{5}}=>2
{{1},{2,4},{3,6,7},{5}}=>1
{{1},{2,4},{3,6},{5,7}}=>3
{{1},{2,4},{3,6},{5},{7}}=>1
{{1,7},{2,4},{3},{5,6}}=>1
{{1},{2,4,7},{3},{5,6}}=>1
{{1},{2,4},{3,7},{5,6}}=>1
{{1},{2,4},{3},{5,6,7}}=>1
{{1},{2,4},{3},{5,6},{7}}=>1
{{1,7},{2,4},{3},{5},{6}}=>0
{{1},{2,4,7},{3},{5},{6}}=>0
{{1},{2,4},{3,7},{5},{6}}=>0
{{1},{2,4},{3},{5,7},{6}}=>0
{{1},{2,4},{3},{5},{6,7}}=>1
{{1},{2,4},{3},{5},{6},{7}}=>0
{{1,5,6,7},{2},{3,4}}=>2
{{1,5,6},{2,7},{3,4}}=>3
{{1,5,6},{2},{3,4,7}}=>2
{{1,5,6},{2},{3,4},{7}}=>2
{{1,5,7},{2,6},{3,4}}=>3
{{1,5},{2,6,7},{3,4}}=>3
{{1,5},{2,6},{3,4,7}}=>3
{{1,5},{2,6},{3,4},{7}}=>3
{{1,5,7},{2},{3,4,6}}=>2
{{1,5},{2,7},{3,4,6}}=>3
{{1,5},{2},{3,4,6,7}}=>1
{{1,5},{2},{3,4,6},{7}}=>1
{{1,5,7},{2},{3,4},{6}}=>1
{{1,5},{2,7},{3,4},{6}}=>2
{{1,5},{2},{3,4,7},{6}}=>1
{{1,5},{2},{3,4},{6,7}}=>2
{{1,5},{2},{3,4},{6},{7}}=>1
{{1,6,7},{2,5},{3,4}}=>2
{{1,6},{2,5,7},{3,4}}=>3
{{1,6},{2,5},{3,4,7}}=>3
{{1,6},{2,5},{3,4},{7}}=>1
{{1,7},{2,5,6},{3,4}}=>2
{{1},{2,5,6,7},{3,4}}=>2
{{1},{2,5,6},{3,4,7}}=>2
{{1},{2,5,6},{3,4},{7}}=>2
{{1,7},{2,5},{3,4,6}}=>2
{{1},{2,5,7},{3,4,6}}=>2
{{1},{2,5},{3,4,6,7}}=>2
{{1},{2,5},{3,4,6},{7}}=>2
{{1,7},{2,5},{3,4},{6}}=>1
{{1},{2,5,7},{3,4},{6}}=>1
{{1},{2,5},{3,4,7},{6}}=>1
{{1},{2,5},{3,4},{6,7}}=>2
{{1},{2,5},{3,4},{6},{7}}=>1
{{1,6,7},{2},{3,4,5}}=>2
{{1,6},{2,7},{3,4,5}}=>3
{{1,6},{2},{3,4,5,7}}=>1
{{1,6},{2},{3,4,5},{7}}=>1
{{1,7},{2,6},{3,4,5}}=>1
{{1},{2,6,7},{3,4,5}}=>2
{{1},{2,6},{3,4,5,7}}=>2
{{1},{2,6},{3,4,5},{7}}=>1
{{1,7},{2},{3,4,5,6}}=>1
{{1},{2,7},{3,4,5,6}}=>1
{{1},{2},{3,4,5,6,7}}=>1
{{1},{2},{3,4,5,6},{7}}=>1
{{1,7},{2},{3,4,5},{6}}=>1
{{1},{2,7},{3,4,5},{6}}=>1
{{1},{2},{3,4,5,7},{6}}=>1
{{1},{2},{3,4,5},{6,7}}=>2
{{1},{2},{3,4,5},{6},{7}}=>1
{{1,6,7},{2},{3,4},{5}}=>2
{{1,6},{2,7},{3,4},{5}}=>3
{{1,6},{2},{3,4,7},{5}}=>1
{{1,6},{2},{3,4},{5,7}}=>1
{{1,6},{2},{3,4},{5},{7}}=>1
{{1,7},{2,6},{3,4},{5}}=>1
{{1},{2,6,7},{3,4},{5}}=>2
{{1},{2,6},{3,4,7},{5}}=>2
{{1},{2,6},{3,4},{5,7}}=>1
{{1},{2,6},{3,4},{5},{7}}=>1
{{1,7},{2},{3,4,6},{5}}=>1
{{1},{2,7},{3,4,6},{5}}=>1
{{1},{2},{3,4,6,7},{5}}=>1
{{1},{2},{3,4,6},{5,7}}=>2
{{1},{2},{3,4,6},{5},{7}}=>1
{{1,7},{2},{3,4},{5,6}}=>2
{{1},{2,7},{3,4},{5,6}}=>2
{{1},{2},{3,4,7},{5,6}}=>2
{{1},{2},{3,4},{5,6,7}}=>2
{{1},{2},{3,4},{5,6},{7}}=>2
{{1,7},{2},{3,4},{5},{6}}=>1
{{1},{2,7},{3,4},{5},{6}}=>1
{{1},{2},{3,4,7},{5},{6}}=>1
{{1},{2},{3,4},{5,7},{6}}=>1
{{1},{2},{3,4},{5},{6,7}}=>2
{{1},{2},{3,4},{5},{6},{7}}=>1
{{1,5,6,7},{2},{3},{4}}=>1
{{1,5,6},{2,7},{3},{4}}=>2
{{1,5,6},{2},{3,7},{4}}=>1
{{1,5,6},{2},{3},{4,7}}=>1
{{1,5,6},{2},{3},{4},{7}}=>1
{{1,5,7},{2,6},{3},{4}}=>2
{{1,5},{2,6,7},{3},{4}}=>2
{{1,5},{2,6},{3,7},{4}}=>2
{{1,5},{2,6},{3},{4,7}}=>3
{{1,5},{2,6},{3},{4},{7}}=>2
{{1,5,7},{2},{3,6},{4}}=>1
{{1,5},{2,7},{3,6},{4}}=>2
{{1,5},{2},{3,6,7},{4}}=>1
{{1,5},{2},{3,6},{4,7}}=>2
{{1,5},{2},{3,6},{4},{7}}=>1
{{1,5,7},{2},{3},{4,6}}=>2
{{1,5},{2,7},{3},{4,6}}=>3
{{1,5},{2},{3,7},{4,6}}=>2
{{1,5},{2},{3},{4,6,7}}=>1
{{1,5},{2},{3},{4,6},{7}}=>0
{{1,5,7},{2},{3},{4},{6}}=>0
{{1,5},{2,7},{3},{4},{6}}=>1
{{1,5},{2},{3,7},{4},{6}}=>0
{{1,5},{2},{3},{4,7},{6}}=>0
{{1,5},{2},{3},{4},{6,7}}=>1
{{1,5},{2},{3},{4},{6},{7}}=>0
{{1,6,7},{2,5},{3},{4}}=>1
{{1,6},{2,5,7},{3},{4}}=>2
{{1,6},{2,5},{3,7},{4}}=>2
{{1,6},{2,5},{3},{4,7}}=>3
{{1,6},{2,5},{3},{4},{7}}=>0
{{1,7},{2,5,6},{3},{4}}=>1
{{1},{2,5,6,7},{3},{4}}=>1
{{1},{2,5,6},{3,7},{4}}=>2
{{1},{2,5,6},{3},{4,7}}=>1
{{1},{2,5,6},{3},{4},{7}}=>1
{{1,7},{2,5},{3,6},{4}}=>2
{{1},{2,5,7},{3,6},{4}}=>2
{{1},{2,5},{3,6,7},{4}}=>2
{{1},{2,5},{3,6},{4,7}}=>3
{{1},{2,5},{3,6},{4},{7}}=>2
{{1,7},{2,5},{3},{4,6}}=>1
{{1},{2,5,7},{3},{4,6}}=>2
{{1},{2,5},{3,7},{4,6}}=>3
{{1},{2,5},{3},{4,6,7}}=>1
{{1},{2,5},{3},{4,6},{7}}=>1
{{1,7},{2,5},{3},{4},{6}}=>0
{{1},{2,5,7},{3},{4},{6}}=>0
{{1},{2,5},{3,7},{4},{6}}=>1
{{1},{2,5},{3},{4,7},{6}}=>0
{{1},{2,5},{3},{4},{6,7}}=>1
{{1},{2,5},{3},{4},{6},{7}}=>0
{{1,6,7},{2},{3,5},{4}}=>1
{{1,6},{2,7},{3,5},{4}}=>2
{{1,6},{2},{3,5,7},{4}}=>1
{{1,6},{2},{3,5},{4,7}}=>2
{{1,6},{2},{3,5},{4},{7}}=>0
{{1,7},{2,6},{3,5},{4}}=>0
{{1},{2,6,7},{3,5},{4}}=>1
{{1},{2,6},{3,5,7},{4}}=>2
{{1},{2,6},{3,5},{4,7}}=>3
{{1},{2,6},{3,5},{4},{7}}=>0
{{1,7},{2},{3,5,6},{4}}=>1
{{1},{2,7},{3,5,6},{4}}=>1
{{1},{2},{3,5,6,7},{4}}=>1
{{1},{2},{3,5,6},{4,7}}=>2
{{1},{2},{3,5,6},{4},{7}}=>1
{{1,7},{2},{3,5},{4,6}}=>2
{{1},{2,7},{3,5},{4,6}}=>2
{{1},{2},{3,5,7},{4,6}}=>2
{{1},{2},{3,5},{4,6,7}}=>2
{{1},{2},{3,5},{4,6},{7}}=>2
{{1,7},{2},{3,5},{4},{6}}=>0
{{1},{2,7},{3,5},{4},{6}}=>0
{{1},{2},{3,5,7},{4},{6}}=>0
{{1},{2},{3,5},{4,7},{6}}=>1
{{1},{2},{3,5},{4},{6,7}}=>1
{{1},{2},{3,5},{4},{6},{7}}=>0
{{1,6,7},{2},{3},{4,5}}=>2
{{1,6},{2,7},{3},{4,5}}=>3
{{1,6},{2},{3,7},{4,5}}=>2
{{1,6},{2},{3},{4,5,7}}=>1
{{1,6},{2},{3},{4,5},{7}}=>1
{{1,7},{2,6},{3},{4,5}}=>1
{{1},{2,6,7},{3},{4,5}}=>2
{{1},{2,6},{3,7},{4,5}}=>3
{{1},{2,6},{3},{4,5,7}}=>1
{{1},{2,6},{3},{4,5},{7}}=>1
{{1,7},{2},{3,6},{4,5}}=>1
{{1},{2,7},{3,6},{4,5}}=>1
{{1},{2},{3,6,7},{4,5}}=>2
{{1},{2},{3,6},{4,5,7}}=>2
{{1},{2},{3,6},{4,5},{7}}=>1
{{1,7},{2},{3},{4,5,6}}=>1
{{1},{2,7},{3},{4,5,6}}=>1
{{1},{2},{3,7},{4,5,6}}=>1
{{1},{2},{3},{4,5,6,7}}=>1
{{1},{2},{3},{4,5,6},{7}}=>1
{{1,7},{2},{3},{4,5},{6}}=>1
{{1},{2,7},{3},{4,5},{6}}=>1
{{1},{2},{3,7},{4,5},{6}}=>1
{{1},{2},{3},{4,5,7},{6}}=>1
{{1},{2},{3},{4,5},{6,7}}=>2
{{1},{2},{3},{4,5},{6},{7}}=>1
{{1,6,7},{2},{3},{4},{5}}=>1
{{1,6},{2,7},{3},{4},{5}}=>2
{{1,6},{2},{3,7},{4},{5}}=>1
{{1,6},{2},{3},{4,7},{5}}=>0
{{1,6},{2},{3},{4},{5,7}}=>0
{{1,6},{2},{3},{4},{5},{7}}=>0
{{1,7},{2,6},{3},{4},{5}}=>0
{{1},{2,6,7},{3},{4},{5}}=>1
{{1},{2,6},{3,7},{4},{5}}=>2
{{1},{2,6},{3},{4,7},{5}}=>1
{{1},{2,6},{3},{4},{5,7}}=>0
{{1},{2,6},{3},{4},{5},{7}}=>0
{{1,7},{2},{3,6},{4},{5}}=>0
{{1},{2,7},{3,6},{4},{5}}=>0
{{1},{2},{3,6,7},{4},{5}}=>1
{{1},{2},{3,6},{4,7},{5}}=>2
{{1},{2},{3,6},{4},{5,7}}=>1
{{1},{2},{3,6},{4},{5},{7}}=>0
{{1,7},{2},{3},{4,6},{5}}=>0
{{1},{2,7},{3},{4,6},{5}}=>0
{{1},{2},{3,7},{4,6},{5}}=>0
{{1},{2},{3},{4,6,7},{5}}=>1
{{1},{2},{3},{4,6},{5,7}}=>2
{{1},{2},{3},{4,6},{5},{7}}=>0
{{1,7},{2},{3},{4},{5,6}}=>1
{{1},{2,7},{3},{4},{5,6}}=>1
{{1},{2},{3,7},{4},{5,6}}=>1
{{1},{2},{3},{4,7},{5,6}}=>1
{{1},{2},{3},{4},{5,6,7}}=>1
{{1},{2},{3},{4},{5,6},{7}}=>1
{{1,7},{2},{3},{4},{5},{6}}=>0
{{1},{2,7},{3},{4},{5},{6}}=>0
{{1},{2},{3,7},{4},{5},{6}}=>0
{{1},{2},{3},{4,7},{5},{6}}=>0
{{1},{2},{3},{4},{5,7},{6}}=>0
{{1},{2},{3},{4},{5},{6,7}}=>1
{{1},{2},{3},{4},{5},{6},{7}}=>0
{{1,2},{3,4},{5,6},{7,8}}=>4
{{1,3},{2,4},{5,6},{7,8}}=>4
{{1,4},{2,3},{5,6},{7,8}}=>3
{{1,5},{2,3},{4,6},{7,8}}=>2
{{1,6},{2,3},{4,5},{7,8}}=>3
{{1,7},{2,3},{4,5},{6,8}}=>2
{{1,8},{2,3},{4,5},{6,7}}=>3
{{1,8},{2,4},{3,5},{6,7}}=>3
{{1,7},{2,4},{3,5},{6,8}}=>2
{{1,6},{2,4},{3,5},{7,8}}=>3
{{1,5},{2,4},{3,6},{7,8}}=>4
{{1,4},{2,5},{3,6},{7,8}}=>4
{{1,3},{2,5},{4,6},{7,8}}=>4
{{1,2},{3,5},{4,6},{7,8}}=>4
{{1,2},{3,6},{4,5},{7,8}}=>3
{{1,3},{2,6},{4,5},{7,8}}=>2
{{1,4},{2,6},{3,5},{7,8}}=>4
{{1,5},{2,6},{3,4},{7,8}}=>4
{{1,6},{2,5},{3,4},{7,8}}=>2
{{1,7},{2,5},{3,4},{6,8}}=>1
{{1,8},{2,5},{3,4},{6,7}}=>2
{{1,8},{2,6},{3,4},{5,7}}=>1
{{1,7},{2,6},{3,4},{5,8}}=>4
{{1,6},{2,7},{3,4},{5,8}}=>4
{{1,5},{2,7},{3,4},{6,8}}=>4
{{1,4},{2,7},{3,5},{6,8}}=>4
{{1,3},{2,7},{4,5},{6,8}}=>1
{{1,2},{3,7},{4,5},{6,8}}=>2
{{1,2},{3,8},{4,5},{6,7}}=>3
{{1,3},{2,8},{4,5},{6,7}}=>2
{{1,4},{2,8},{3,5},{6,7}}=>2
{{1,5},{2,8},{3,4},{6,7}}=>2
{{1,6},{2,8},{3,4},{5,7}}=>4
{{1,7},{2,8},{3,4},{5,6}}=>4
{{1,8},{2,7},{3,4},{5,6}}=>2
{{1,8},{2,7},{3,5},{4,6}}=>2
{{1,7},{2,8},{3,5},{4,6}}=>4
{{1,6},{2,8},{3,5},{4,7}}=>4
{{1,5},{2,8},{3,6},{4,7}}=>4
{{1,4},{2,8},{3,6},{5,7}}=>4
{{1,3},{2,8},{4,6},{5,7}}=>2
{{1,2},{3,8},{4,6},{5,7}}=>3
{{1,2},{3,7},{4,6},{5,8}}=>4
{{1,3},{2,7},{4,6},{5,8}}=>4
{{1,4},{2,7},{3,6},{5,8}}=>3
{{1,5},{2,7},{3,6},{4,8}}=>3
{{1,6},{2,7},{3,5},{4,8}}=>4
{{1,7},{2,6},{3,5},{4,8}}=>4
{{1,8},{2,6},{3,5},{4,7}}=>3
{{1,8},{2,5},{3,6},{4,7}}=>3
{{1,7},{2,5},{3,6},{4,8}}=>4
{{1,6},{2,5},{3,7},{4,8}}=>4
{{1,5},{2,6},{3,7},{4,8}}=>2
{{1,4},{2,6},{3,7},{5,8}}=>3
{{1,3},{2,6},{4,7},{5,8}}=>4
{{1,2},{3,6},{4,7},{5,8}}=>4
{{1,2},{3,5},{4,7},{6,8}}=>4
{{1,3},{2,5},{4,7},{6,8}}=>4
{{1,4},{2,5},{3,7},{6,8}}=>4
{{1,5},{2,4},{3,7},{6,8}}=>4
{{1,6},{2,4},{3,7},{5,8}}=>4
{{1,7},{2,4},{3,6},{5,8}}=>4
{{1,8},{2,4},{3,6},{5,7}}=>3
{{1,8},{2,3},{4,6},{5,7}}=>3
{{1,7},{2,3},{4,6},{5,8}}=>2
{{1,6},{2,3},{4,7},{5,8}}=>3
{{1,5},{2,3},{4,7},{6,8}}=>2
{{1,4},{2,3},{5,7},{6,8}}=>3
{{1,3},{2,4},{5,7},{6,8}}=>4
{{1,2},{3,4},{5,7},{6,8}}=>4
{{1,2},{3,4},{5,8},{6,7}}=>3
{{1,3},{2,4},{5,8},{6,7}}=>3
{{1,4},{2,3},{5,8},{6,7}}=>2
{{1,5},{2,3},{4,8},{6,7}}=>2
{{1,6},{2,3},{4,8},{5,7}}=>1
{{1,7},{2,3},{4,8},{5,6}}=>2
{{1,8},{2,3},{4,7},{5,6}}=>2
{{1,8},{2,4},{3,7},{5,6}}=>1
{{1,7},{2,4},{3,8},{5,6}}=>4
{{1,6},{2,4},{3,8},{5,7}}=>4
{{1,5},{2,4},{3,8},{6,7}}=>1
{{1,4},{2,5},{3,8},{6,7}}=>3
{{1,3},{2,5},{4,8},{6,7}}=>2
{{1,2},{3,5},{4,8},{6,7}}=>2
{{1,2},{3,6},{4,8},{5,7}}=>4
{{1,3},{2,6},{4,8},{5,7}}=>4
{{1,4},{2,6},{3,8},{5,7}}=>4
{{1,5},{2,6},{3,8},{4,7}}=>4
{{1,6},{2,5},{3,8},{4,7}}=>4
{{1,7},{2,5},{3,8},{4,6}}=>4
{{1,8},{2,5},{3,7},{4,6}}=>3
{{1,8},{2,6},{3,7},{4,5}}=>3
{{1,7},{2,6},{3,8},{4,5}}=>2
{{1,6},{2,7},{3,8},{4,5}}=>3
{{1,5},{2,7},{3,8},{4,6}}=>4
{{1,4},{2,7},{3,8},{5,6}}=>4
{{1,3},{2,7},{4,8},{5,6}}=>4
{{1,2},{3,7},{4,8},{5,6}}=>4
{{1,2},{3,8},{4,7},{5,6}}=>2
{{1,3},{2,8},{4,7},{5,6}}=>1
{{1,4},{2,8},{3,7},{5,6}}=>4
{{1,5},{2,8},{3,7},{4,6}}=>4
{{1,6},{2,8},{3,7},{4,5}}=>2
{{1,7},{2,8},{3,6},{4,5}}=>3
{{1,8},{2,7},{3,6},{4,5}}=>1
{{1},{2},{3},{4,5,6,7,8}}=>1
{{1},{2},{3,4,8},{5,6,7}}=>2
{{1},{2,3},{4,7,8},{5,6}}=>3
{{1},{2,3},{4,5,6,8},{7}}=>2
{{1},{2,4,6,8},{3},{5},{7}}=>0
{{1},{2,4,8},{3},{5,7},{6}}=>0
{{1},{2,4,5,8},{3},{6,7}}=>2
{{1},{2,8},{3,4},{5,6,7}}=>2
{{1},{2,5,8},{3,4},{6,7}}=>2
{{1},{2,3,5},{4},{6,7,8}}=>2
{{1},{2,6,8},{3,5},{4},{7}}=>0
{{1},{2,8},{3,5,7},{4},{6}}=>0
{{1},{2,8},{3,4,5},{6,7}}=>2
{{1},{2,8},{3,7},{4,6},{5}}=>0
{{1},{2,3,4,7,8},{5},{6}}=>1
{{1},{2,3,4,6,7,8},{5}}=>1
{{1},{2,3,8},{4,5,7},{6}}=>2
{{1},{2,3,4,5,8},{6},{7}}=>1
{{1},{2,3,4,5,7,8},{6}}=>1
{{1},{2,3,4,8},{5,6,7}}=>2
{{1},{2,3,4,5,8},{6,7}}=>2
{{1},{2,3,4,5,6,8},{7}}=>1
{{1},{2,3,4,5,6,7,8}}=>1
{{1,2},{3},{4,6,7,8},{5}}=>2
{{1,2},{3,4},{5,7,8},{6}}=>3
{{1,2},{3,4},{5,6,8},{7}}=>3
{{1,2},{3,6,7,8},{4},{5}}=>2
{{1,2},{3,5,6},{4},{7,8}}=>3
{{1,2},{3,7,8},{4},{5,6}}=>3
{{1,2},{3,5,8},{4},{6,7}}=>2
{{1,2},{3,5,6,8},{4},{7}}=>2
{{1,2},{3,6,8},{4,5},{7}}=>2
{{1,2},{3,4,6},{5},{7,8}}=>3
{{1,2},{3,7,8},{4,6},{5}}=>2
{{1,2},{3,8},{4,6,7},{5}}=>2
{{1,2},{3,4,8},{5},{6,7}}=>3
{{1,2},{3,4,6,8},{5},{7}}=>2
{{1,2},{3,8},{4,5,7},{6}}=>2
{{1,2},{3,4,8},{5,7},{6}}=>2
{{1,3},{2},{4,6,8},{5},{7}}=>0
{{1,3},{2},{4,7,8},{5,6}}=>2
{{1,3},{2},{4,8},{5,7},{6}}=>0
{{1,3},{2},{4,5,6,8},{7}}=>1
{{1,5,6,7,8},{2},{3},{4}}=>1
{{1,6,7,8},{2},{3},{4,5}}=>2
{{1,4,5,6},{2},{3},{7,8}}=>2
{{1,4,7,8},{2},{3},{5,6}}=>2
{{1,4,5,8},{2},{3},{6,7}}=>2
{{1,3,4},{2},{5,6},{7,8}}=>3
{{1,3,4},{2},{5,7,8},{6}}=>2
{{1,3,4},{2},{5,8},{6,7}}=>2
{{1,5,6},{2},{3,4},{7,8}}=>3
{{1,7,8},{2},{3,4},{5,6}}=>3
{{1,5,8},{2},{3,4},{6,7}}=>2
{{1,3,5},{2},{4},{6,8},{7}}=>0
{{1,3,5},{2},{4},{6,7,8}}=>1
{{1,6,7,8},{2},{3,5},{4}}=>1
{{1,7,8},{2},{3,5,6},{4}}=>2
{{1,3,5,7},{2},{4},{6},{8}}=>0
{{1,3,6},{2},{4,5},{7,8}}=>2
{{1,7,8},{2},{3,6},{4,5}}=>2
{{1,3,8},{2},{4,5},{6,7}}=>2
{{1,3,7},{2},{4,6},{5},{8}}=>0
{{1,3,8},{2},{4,6,7},{5}}=>1
{{1,8},{2},{3,4,5,6},{7}}=>1
{{1,3,8},{2},{4,7},{5,6}}=>1
{{1,4},{2,3},{5,7,8},{6}}=>2
{{1,4},{2,3},{5,6,8},{7}}=>2
{{1,8},{2,3},{4},{5,6,7}}=>2
{{1,6,8},{2,3},{4,5},{7}}=>2
{{1,4,6},{2,3},{5},{7,8}}=>2
{{1,8},{2,3},{4,6,7},{5}}=>2
{{1,4,8},{2,3},{5},{6,7}}=>2
{{1,4,6,8},{2,3},{5},{7}}=>1
{{1,8},{2,3},{4,5,7},{6}}=>2
{{1,4,8},{2,3},{5,7},{6}}=>1
{{1,2,4},{3},{5,6},{7,8}}=>3
{{1,2,4},{3},{5,8},{6,7}}=>2
{{1,2,4},{3},{5,6,8},{7}}=>2
{{1,5},{2,4},{3},{6,8},{7}}=>0
{{1,5,6},{2,4},{3},{7,8}}=>2
{{1,7,8},{2,4},{3},{5,6}}=>2
{{1,5,7},{2,4},{3},{6},{8}}=>0
{{1,5,8},{2,4},{3},{6,7}}=>1
{{1,6,7,8},{2,5},{3},{4}}=>1
{{1,7,8},{2,5,6},{3},{4}}=>2
{{1,8},{2,5,6,7},{3},{4}}=>1
{{1,6},{2,4,5},{3},{7,8}}=>2
{{1,8},{2,4,5},{3},{6,7}}=>2
{{1,2,6},{3},{4,5},{7,8}}=>3
{{1,7,8},{2,6},{3},{4,5}}=>2
{{1,8},{2,6,7},{3},{4,5}}=>2
{{1,2,8},{3},{4,5},{6,7}}=>3
{{1,2,6,8},{3},{4,5},{7}}=>2
{{1,2,4,6},{3},{5},{7,8}}=>2
{{1,7},{2,4,6},{3},{5},{8}}=>0
{{1,2,4,8},{3},{5},{6,7}}=>2
{{1,2,4,6,8},{3},{5},{7}}=>1
{{1,8},{2,4,7},{3},{5,6}}=>1
{{1,2,8},{3},{4,7},{5,6}}=>2
{{1,2,8},{3},{4,5,7},{6}}=>2
{{1,2,4,8},{3},{5,7},{6}}=>1
{{1,6,8},{2,3,4},{5},{7}}=>1
{{1,6,8},{2,5},{3,4},{7}}=>1
{{1,8},{2,5,7},{3,4},{6}}=>1
{{1,6},{2,3,5},{4},{7,8}}=>2
{{1,8},{2,3,5},{4},{6,7}}=>2
{{1,6,8},{2,3,5},{4},{7}}=>1
{{1,2,6},{3,5},{4},{7,8}}=>2
{{1,7},{2,6},{3,5},{4},{8}}=>0
{{1,7,8},{2,6},{3,5},{4}}=>1
{{1,8},{2,6,7},{3,5},{4}}=>1
{{1,2,8},{3,5},{4},{6,7}}=>2
{{1,2,6,8},{3,5},{4},{7}}=>1
{{1,8},{2,7},{3,5,6},{4}}=>1
{{1,2,8},{3,5,6},{4},{7}}=>2
{{1,8},{2,3,7},{4},{5,6}}=>2
{{1,2,8},{3,7},{4},{5,6}}=>2
{{1,8},{2,3,5,7},{4},{6}}=>1
{{1,2,8},{3,5,7},{4},{6}}=>1
{{1,2,3,5,6,7},{4},{8}}=>1
{{1,8},{2,3,6},{4,5},{7}}=>2
{{1,8},{2,3,7},{4,5},{6}}=>2
{{1,8},{2,7},{3,4,6},{5}}=>1
{{1,8},{2,3,7},{4,6},{5}}=>1
{{1,2,8},{3,7},{4,6},{5}}=>1
{{1,2,3,4,7},{5},{6},{8}}=>1
{{1,2,3,4,6,7},{5},{8}}=>1
{{1,2,3,7},{4,5,6},{8}}=>2
{{1,2,3,4,7},{5,6},{8}}=>2
{{1,2,3,4,5,7},{6},{8}}=>1
{{1,2,3,4,5,6,7},{8}}=>1
{{1,5,7,8},{2,6},{3},{4}}=>2
{{1,3,7,8},{2,5},{4},{6}}=>1
{{1,5,6,8},{2,7},{3},{4}}=>2
{{1,2,4,8},{3,7},{5},{6}}=>2
{{1,3,6,8},{2,4},{5},{7}}=>2
{{1,2,5,8},{3,6},{4},{7}}=>2
{{1,3,4,8},{2,6},{5},{7}}=>1
{{1,2,4,8},{3,6},{5},{7}}=>1
{{1,4,6,7},{2,8},{3},{5}}=>2
{{1,3,6,7},{2,8},{4},{5}}=>2
{{1,4,5,7},{2,8},{3},{6}}=>2
{{1,3,5,7},{2,8},{4},{6}}=>2
{{1,2,5,7},{3,8},{4},{6}}=>2
{{1,3,4,7},{2,8},{5},{6}}=>2
{{1,2,4,7},{3,8},{5},{6}}=>2
{{1,2,5,6},{3,8},{4},{7}}=>1
{{1,3,5,7},{2,6},{4},{8}}=>2
{{1,3,5,7},{2,4},{6},{8}}=>2
{{1,4,7},{2,6,8},{3},{5}}=>2
{{1,2,7},{3,6,8},{4},{5}}=>2
{{1,2,7},{3,5,8},{4},{6}}=>2
{{1,3,7},{2,4,8},{5},{6}}=>2
{{1,4,6},{2,7,8},{3},{5}}=>2
{{1,3,6},{2,7,8},{4},{5}}=>2
{{1,2,4},{3,7,8},{5},{6}}=>2
{{1,2,6},{3,5,8},{4},{7}}=>1
{{1,3,6},{2,4,8},{5},{7}}=>2
{{1,3,5},{2,6,8},{4},{7}}=>2
{{1,3,4},{2,6,8},{5},{7}}=>1
{{1,2,4},{3,6,8},{5},{7}}=>1
{{1,4,8},{2,6},{3,7},{5}}=>3
{{1,3,8},{2,6},{4,7},{5}}=>3
{{1,2,8},{3,6},{4,7},{5}}=>3
{{1,4,8},{2,5},{3,7},{6}}=>3
{{1,3,8},{2,5},{4,7},{6}}=>3
{{1,2,8},{3,5},{4,7},{6}}=>2
{{1,4,8},{2,5},{3,6},{7}}=>3
{{1,4,7},{2,6},{3,8},{5}}=>2
{{1,3,7},{2,6},{4,8},{5}}=>2
{{1,2,7},{3,6},{4,8},{5}}=>2
{{1,4,7},{2,5},{3,8},{6}}=>3
{{1,3,7},{2,5},{4,8},{6}}=>3
{{1,2,7},{3,5},{4,8},{6}}=>3
{{1,4,6},{2,7},{3,8},{5}}=>3
{{1,3,6},{2,7},{4,8},{5}}=>3
{{1,2,6},{3,7},{4,8},{5}}=>3
{{1,3,5},{2,7},{4,8},{6}}=>3
{{1,2,5},{3,7},{4,8},{6}}=>3
{{1,3,4},{2,7},{5,8},{6}}=>3
{{1,2,4},{3,7},{5,8},{6}}=>3
{{1,3,6},{2,5},{4,8},{7}}=>2
{{1,2,6},{3,5},{4,8},{7}}=>2
{{1,3,5},{2,6},{4,8},{7}}=>2
{{1,2,5},{3,6},{4,8},{7}}=>2
{{1,3,4},{2,6},{5,8},{7}}=>2
{{1,2,4},{3,6},{5,8},{7}}=>2
{{1,3,5},{2,4},{6,8},{7}}=>2
{{1,4,7},{2,5},{3,6},{8}}=>3
{{1,3,7},{2,5},{4,6},{8}}=>3
{{1,3,5,8},{2},{4,6},{7}}=>2
{{1,3,5,7},{2},{4},{6,8}}=>2
{{1,5,7},{2,4},{3},{6,8}}=>2
{{1,5},{2,4,8},{3},{6,7}}=>1
{{1,5,8},{2,4},{3,6},{7}}=>3
{{1,6,8},{2,4},{3,5},{7}}=>2
{{1},{2,3,5,8},{4,6},{7}}=>2
{{1,5,8},{2,6},{3,4},{7}}=>3
{{1,4,8},{2,6},{3,5},{7}}=>3
{{1,4},{2,5,8},{3},{6,7}}=>3
{{1,4,7},{2,5},{3},{6,8}}=>2
{{1,4},{2},{3,6,7},{5,8}}=>2
{{1,4},{2},{3,6},{5,7,8}}=>2
{{1,4},{2},{3,7},{5,6,8}}=>2
{{1,4},{2},{3,5,8},{6,7}}=>2
{{1,5},{2},{3,4,8},{6,7}}=>2
{{1,2,5},{3},{4,7,8},{6}}=>2
{{1,2,5,7},{3},{4,8},{6}}=>1
{{1},{2,3,5,7},{4},{6,8}}=>2
{{1,5,7},{2},{3,4},{6,8}}=>3
{{1,4,7},{2},{3,5},{6,8}}=>3
{{1,4},{2},{3,8},{5,6,7}}=>1
{{1,4,6},{2},{3,8},{5,7}}=>2
{{1,4,6},{2},{3,7},{5,8}}=>3
{{1},{2,6},{3,4,7},{5,8}}=>3
{{1,6},{2,3,7},{4},{5,8}}=>3
{{1,2},{3,6,7},{4,8},{5}}=>3
{{1,2},{3,6},{4,7,8},{5}}=>3
{{1,6},{2,3},{4},{5,7,8}}=>2
{{1},{2,6},{3,4},{5,7,8}}=>2
{{1},{2,7},{3,4},{5,6,8}}=>2
{{1,7},{2,3},{4},{5,6,8}}=>2
{{1,2},{3,7},{4,6,8},{5}}=>3
{{1,2},{3,5,8},{4,7},{6}}=>3
{{1,7},{2,3,8},{4,5},{6}}=>3
{{1},{2,5},{3,4,8},{6,7}}=>2
{{1},{2,4},{3,5,8},{6,7}}=>3
{{1},{2,4},{3,7},{5,6,8}}=>3
{{1},{2,4},{3,6},{5,7,8}}=>3
{{1},{2,4},{3,6,7},{5,8}}=>3
{{1,3},{2,6,7},{4},{5,8}}=>2
{{1,3},{2,6},{4},{5,7,8}}=>2
{{1,3},{2,7},{4},{5,6,8}}=>2
{{1,3},{2,7,8},{4,5},{6}}=>2
{{1,3,8},{2,4,7},{5},{6}}=>2
{{1,4,8},{2,3,7},{5},{6}}=>2
{{1,4,7},{2,3,8},{5},{6}}=>2
{{1,3,7},{2,8},{4,5},{6}}=>3
{{1,3},{2,8},{4},{5,6,7}}=>1
{{1,3,6},{2,8},{4},{5,7}}=>3
{{1,3,6},{2,7},{4},{5,8}}=>3
{{1},{2,4,6},{3,7},{5,8}}=>3
{{1},{2,4,6},{3,8},{5,7}}=>3
{{1},{2,4},{3,8},{5,6,7}}=>1
{{1},{2,4,7},{3,5},{6,8}}=>3
{{1},{2,5,7},{3,4},{6,8}}=>3
{{1},{2,8},{3,4,6},{5,7}}=>2
{{1,8},{2,3,6},{4},{5,7}}=>1
{{1,2,6},{3,8},{4,7},{5}}=>2
{{1,7},{2,3,6},{4},{5,8}}=>3
{{1},{2,7},{3,4,6},{5,8}}=>3
{{1,2},{3,6,8},{4,7},{5}}=>3
{{1,2},{3,5,7},{4,8},{6}}=>3
{{1,2},{3,7},{4,5,8},{6}}=>3
{{1,4,8},{2,7},{3},{5,6}}=>2
{{1,3,7},{2,8},{4},{5,6}}=>3
{{1,3,7},{2,8},{4,6},{5}}=>2
{{1,3,7},{2},{4,5,8},{6}}=>2
{{1,7},{2,3},{4,5,8},{6}}=>2
{{1,7},{2,3,8},{4,6},{5}}=>2
{{1,7},{2,3,8},{4},{5,6}}=>3
{{1,7,8},{2,5},{3,6},{4}}=>3
{{1,7},{2,4,6,8},{3},{5}}=>2
{{1,7},{2,4,5},{3,8},{6}}=>3
{{1,4,6},{2,5},{3},{7,8}}=>3
{{1,5,7,8},{2},{3,6},{4}}=>1
{{1,5,8},{2,7},{3,6},{4}}=>3
{{1,8},{2,5,7},{3,6},{4}}=>2
{{1,5,8},{2,6,7},{3},{4}}=>2
{{1,4,5,7},{2},{3,8},{6}}=>1
{{1,3,5},{2,6},{4},{7,8}}=>3
{{1,3,6},{2,8},{4,7},{5}}=>2
{{1,4,6,8},{2},{3,7},{5}}=>2
{{1,8},{2,4,6},{3,7},{5}}=>2
{{1,4,8},{2,5},{3},{6,7}}=>3
{{1,3,5},{2,8},{4},{6,7}}=>1
{{1,5},{2,3,8},{4},{6,7}}=>2
{{1,8},{2,6},{3,4,7},{5}}=>2
{{1,6,8},{2},{3,4,7},{5}}=>1
{{1,6,8},{2,4},{3,7},{5}}=>3
{{1,6},{2,3,8},{4,7},{5}}=>2
{{1,6},{2,3,7,8},{4},{5}}=>2
{{1,5},{2,3,7},{4,8},{6}}=>3
{{1,5},{2,3,6},{4},{7,8}}=>3
{{1,5,7},{2,4},{3,8},{6}}=>3
{{1,6,7},{2,4,8},{3},{5}}=>2
{{1,6,8},{2,5,7},{3},{4}}=>2
{{1,6,8},{2,7},{3,5},{4}}=>2
{{1,6,8},{2,7},{3},{4,5}}=>3
{{1,6,7},{2,8},{3,4},{5}}=>3
{{1,5,7},{2},{3,4,8},{6}}=>1
{{1,7},{2,5},{3,4,8},{6}}=>3
{{1,7},{2,6,8},{3,4},{5}}=>3
{{1,4,8},{2,3,6},{5},{7}}=>1
{{1,5},{2,4,8},{3,7},{6}}=>2
{{1,5},{2,4,7},{3,8},{6}}=>2
{{1,5},{2,4,8},{3,6},{7}}=>3
{{1,6},{2,4,8},{3,5},{7}}=>2
{{1,6},{2,5},{3,4,8},{7}}=>2
{{1,6},{2,3,5},{4,8},{7}}=>2
{{1,5},{2,3,6},{4,8},{7}}=>2
{{1,5},{2,6},{3,4,8},{7}}=>3
{{1,4,8},{2,7},{3,6},{5}}=>3
{{1,4,7},{2,8},{3,6},{5}}=>2
{{1,4,6},{2,8},{3,7},{5}}=>3
{{1,4,7},{2,8},{3,5},{6}}=>2
{{1,5},{2,8},{3,4,7},{6}}=>3
{{1,5},{2,3,8},{4,7},{6}}=>3
{{1,2,5},{3,8},{4,7},{6}}=>3
{{1,5},{2,7},{3,4,8},{6}}=>3
{{1,4,8},{2,7},{3,5},{6}}=>3
{{1,7},{2,6},{3,4,8},{5}}=>2
{{1,7},{2,3,6},{4,8},{5}}=>2
{{1,8},{2,3,6},{4,7},{5}}=>2
{{1,8},{2,3,5},{4,7},{6}}=>1
{{1,8},{2,5},{3,4,7},{6}}=>1
{{1,8},{2,4,7},{3,5},{6}}=>2
{{1,8},{2,4,7},{3,6},{5}}=>2
{{1,7},{2,4,8},{3,6},{5}}=>2
{{1,3,5},{2,8},{4,7},{6}}=>3
{{1,3,8},{2,7},{4,6},{5}}=>2
{{1,6},{2,4,8},{3,7},{5}}=>3
{{1,6},{2,4,7},{3,8},{5}}=>2
{{1,7},{2,4,6},{3,8},{5}}=>3
{{1,7},{2,4,8},{3,5},{6}}=>2
{{1,7},{2,3,5},{4,8},{6}}=>3
{{1,2,7},{3,8},{4,6},{5}}=>2
{{1,7},{2,8},{3,4,6},{5}}=>3
{{1,6},{2,8},{3,4,7},{5}}=>2
{{1,6},{2,3,7},{4,8},{5}}=>2
{{1,6},{2,7},{3,4,8},{5}}=>3
{{1,3,5},{2},{4,6,8},{7}}=>2
{{1,3},{2,4,6,8},{5},{7}}=>2
{{1},{2,4,6,8},{3},{5,7}}=>2
{{1,3},{2},{4,6,8},{5,7}}=>2
{{1,3,6},{2},{4,8},{5,7}}=>3
{{1,3,6},{2},{4,7},{5,8}}=>3
{{1,3,5},{2},{4,7},{6,8}}=>3
{{1,3,5,7},{2},{4,6},{8}}=>2
{{1,3,7},{2},{4,6,8},{5}}=>2
{{1,3,7},{2},{4,6},{5,8}}=>3
{{1,3,5,7},{2},{4,8},{6}}=>2
{{1,3},{2,4,8},{5,7},{6}}=>2
{{1},{2,4,8},{3,5,7},{6}}=>2
{{1,4},{2,8},{3,5,7},{6}}=>3
{{1,4},{2,5,7},{3,8},{6}}=>3
{{1,3},{2,5,7},{4,8},{6}}=>3
{{1,3},{2,7},{4,6,8},{5}}=>3
{{1,3,7},{2,4,6},{5},{8}}=>2
{{1,7},{2,4,6},{3},{5,8}}=>3
{{1,5,7},{2,4,8},{3},{6}}=>2
{{1},{2,8},{3,5,7},{4,6}}=>2
{{1,7},{2,4,6},{3,5},{8}}=>2
{{1,4,7},{2,6},{3,5},{8}}=>3
{{1},{2,5,8},{3,7},{4,6}}=>3
{{1},{2,5,8},{3,6},{4,7}}=>3
{{1},{2,4,8},{3,6},{5,7}}=>3
{{1},{2,4,6,8},{3,5},{7}}=>2
{{1,4},{2,6,8},{3,5},{7}}=>3
{{1,4},{2,5},{3,6,8},{7}}=>3
{{1,3},{2,5},{4,6,8},{7}}=>3
{{1,5},{2,4,6,8},{3},{7}}=>2
{{1,5},{2,4},{3,6,8},{7}}=>3
{{1},{2,6,8},{3,5,7},{4}}=>2
{{1,6},{2,8},{3,5,7},{4}}=>3
{{1,6},{2,4,8},{3},{5,7}}=>3
{{1,6},{2,4,7},{3},{5,8}}=>3
{{1,5},{2,4,7},{3},{6,8}}=>3
{{1,5,7},{2,4,6},{3},{8}}=>2
{{1,5,7},{2,4},{3,6},{8}}=>3
{{1},{2,6,8},{3,5},{4,7}}=>3
{{1},{2,4,6,8},{3,7},{5}}=>2
{{1,6},{2,7},{3,5,8},{4}}=>3
{{1,3,5},{2,7},{4},{6,8}}=>3
{{1,7},{2,6,8},{3,5},{4}}=>2
{{1,7},{2,6},{3,5,8},{4}}=>3
{{1,2},{3,4,6},{5,8},{7}}=>2
{{1,2},{3,6},{4,5,8},{7}}=>2
{{1,2},{3,5,6},{4,8},{7}}=>2
{{1,2,5,6},{3},{4,8},{7}}=>1
{{1,2,6},{3},{4,5,8},{7}}=>2
{{1,6},{2,3},{4,5,8},{7}}=>2
{{1,5,6},{2,3},{4,8},{7}}=>2
{{1,5,6},{2,3,8},{4},{7}}=>2
{{1,5,6},{2,8},{3,4},{7}}=>2
{{1,5},{2,8},{3,4,6},{7}}=>2
{{1,5},{2,3,8},{4,6},{7}}=>2
{{1,6},{2,3,5,8},{4},{7}}=>1
{{1,2,5},{3,8},{4,6},{7}}=>2
{{1,2,4},{3,6},{5},{7,8}}=>2
{{1,2,4,6},{3},{5,8},{7}}=>1
{{1,2,4},{3,8},{5,7},{6}}=>1
{{1,2,4},{3,8},{5},{6,7}}=>2
{{1,4},{2,3,8},{5},{6,7}}=>2
{{1,3,4},{2,8},{5},{6,7}}=>2
{{1,3,4},{2,8},{5,7},{6}}=>1
{{1,4},{2,3,8},{5,7},{6}}=>1
{{1,4,6},{2,3},{5,8},{7}}=>2
{{1,4},{2,3,6},{5},{7,8}}=>2
{{1,4},{2,3,6,8},{5},{7}}=>1
{{1,4},{2,3,6},{5,8},{7}}=>2
{{1,8},{2,4,5},{3,7},{6}}=>1
{{1,3,8},{2,6},{4,5},{7}}=>2
{{1,3,4},{2,6},{5},{7,8}}=>2
{{1,6},{2,5,8},{3,4},{7}}=>2
{{1,6},{2,4,5},{3,8},{7}}=>2
{{1,4,5},{2,8},{3,6},{7}}=>2
{{1,3,8},{2,5,6},{4},{7}}=>1
{{1,3,8},{2,5},{4},{6,7}}=>2
{{1,5},{2,4},{3,7,8},{6}}=>2
{{1,5,6},{2,4},{3,8},{7}}=>2
{{1,4},{2,8},{3,5,6},{7}}=>2
{{1,4},{2,7,8},{3,5},{6}}=>2
{{1,4,7},{2,8},{3},{5,6}}=>3
{{1,5,7},{2,8},{3,4},{6}}=>3
{{1,5,7},{2,3,8},{4},{6}}=>2
{{1,2,5},{3,7},{4},{6,8}}=>3
{{1,5},{2,3,7},{4},{6,8}}=>3
{{1,4,5},{2,7},{3},{6,8}}=>3
{{1,4},{2,7},{3},{5,6,8}}=>3
{{1,4},{2,6,7},{3},{5,8}}=>3
{{1,4},{2,6},{3},{5,7,8}}=>3
{{1,6},{2,5,7,8},{3},{4}}=>2
{{1,6,7},{2,5,8},{3},{4}}=>2
{{1,7},{2,5,6,8},{3},{4}}=>2
{{1,7},{2,6,8},{3},{4,5}}=>3
{{1,7},{2,3,6,8},{4},{5}}=>2
{{1,2,8},{3,6},{4},{5,7}}=>2
{{1,8},{2,6},{3},{4,5,7}}=>1
{{1,8},{2,5,6},{3},{4,7}}=>1
{{1,8},{2,5},{3},{4,6,7}}=>1
{{1,7,8},{2,5},{3},{4,6}}=>2
{{1,8},{2,4},{3,6,7},{5}}=>1
{{1,7,8},{2,4},{3,6},{5}}=>2
{{1,4},{2,3,7},{5,8},{6}}=>3
{{1,3},{2,7},{4,5,8},{6}}=>3
{{1,3},{2,6,7},{4,8},{5}}=>3
{{1,3},{2,6},{4,7,8},{5}}=>3
{{1,6},{2,4,7,8},{3},{5}}=>2
{{1,7},{2,4,8},{3},{5,6}}=>3
{{1,7},{2,4,5,8},{3},{6}}=>2
{{1,7},{2,5,8},{3,4},{6}}=>3
{{1,7},{2,3,5,8},{4},{6}}=>2
{{1,2,7},{3},{4,6},{5,8}}=>2
{{1,7},{2},{3,4,6},{5,8}}=>2
{{1,7},{2},{3,6},{4,5,8}}=>2
{{1,7},{2},{3,5,6},{4,8}}=>2
{{1,6,7},{2},{3,5},{4,8}}=>2
{{1,6},{2},{3,5},{4,7,8}}=>2
{{1,5},{2},{3,7,8},{4,6}}=>2
{{1,5},{2},{3,8},{4,6,7}}=>2
{{1,5,6},{2},{3,8},{4,7}}=>2
{{1,6},{2},{3,8},{4,5,7}}=>2
{{1,6},{2},{3,4,8},{5,7}}=>2
{{1,2,6},{3},{4,8},{5,7}}=>2
{{1,2,6,8},{3},{4,7},{5}}=>1
{{1,6,8},{2,3},{4,7},{5}}=>2
{{1,6,8},{2},{3,7},{4,5}}=>2
{{1,5,6,8},{2},{3,7},{4}}=>1
{{1,5,8},{2},{3,6,7},{4}}=>1
{{1,6},{2,4},{3},{5,7,8}}=>1
{{1,7},{2,4,5},{3},{6,8}}=>1
{{1,8},{2,4,5},{3,6},{7}}=>2
{{1,8},{2,4},{3,5,6},{7}}=>2
{{1,5,8},{2,3},{4,6},{7}}=>2
{{1,8},{2,5},{3,4,6},{7}}=>2
{{1,4,8},{2},{3,5,6},{7}}=>1
{{1,4},{2},{3,6,8},{5,7}}=>2
{{1,5,7},{2,3},{4},{6,8}}=>3
{{1,4,6},{2},{3},{5,7,8}}=>2
{{1},{2,5,6},{3,7},{4,8}}=>3
{{1},{2,5,6},{3},{4,7,8}}=>2
{{1},{2,5},{3,7},{4,6,8}}=>3
{{1},{2},{3,6,7},{4,5,8}}=>2
{{1},{2,3,6,7},{4},{5,8}}=>1
{{1},{2,3,6},{4,8},{5,7}}=>3
{{1},{2},{3,4,6,8},{5,7}}=>2
{{1},{2},{3,6},{4,5,7,8}}=>2
{{1},{2,5},{3},{4,6,7,8}}=>1
{{1},{2,5},{3,6},{4,7,8}}=>3
{{1},{2,5},{3,6,7},{4,8}}=>3
{{1},{2},{3,5,6,7},{4,8}}=>2
{{1},{2},{3,5,6},{4,7,8}}=>2
{{1},{2},{3,5},{4,6,7,8}}=>2
{{1},{2,4,8},{3,5},{6,7}}=>3
{{1},{2,4},{3,6,8},{5,7}}=>3
{{1},{2,4,7},{3,6},{5,8}}=>3
{{1,3},{2,8},{4,5,7},{6}}=>1
{{1,3},{2,4,7,8},{5},{6}}=>2
{{1,7},{2,3,4,8},{5},{6}}=>2
{{1},{2,4,7},{3},{5,6,8}}=>2
{{1,7},{2},{3,4,5},{6,8}}=>1
{{1},{2,3,7},{4,8},{5,6}}=>3
{{1},{2},{3,7},{4,5,6,8}}=>2
{{1},{2},{3,5,7},{4,6,8}}=>2
{{1},{2,6},{3,5},{4,7,8}}=>3
{{1},{2,6},{3,5,7},{4,8}}=>2
{{1,5},{2},{3,6,7},{4,8}}=>2
{{1,5},{2},{3,6},{4,7,8}}=>2
{{1,5},{2},{3},{4,6,7,8}}=>1
{{1},{2,6},{3},{4,5,7,8}}=>1
{{1,6},{2},{3,4},{5,7,8}}=>2
{{1,2,6},{3},{4,7,8},{5}}=>2
{{1,6},{2},{3,4,7},{5,8}}=>2
{{1},{2,6},{3,7},{4,5,8}}=>3
{{1,5},{2},{3,7},{4,6,8}}=>2
{{1,5},{2,6},{3},{4,7,8}}=>3
{{1,2,3,4,5,6,7,8},{9}}=>1
{{1},{2,3,4,5,6,7,8,9}}=>1
{{1,2,3,4,5,6,8},{7},{9}}=>1
{{1},{2,3,4,5,6,7,9},{8}}=>1
{{1,2,3,4,5,8},{6,7},{9}}=>2
{{1,2,3,4,5,7,8},{6},{9}}=>1
{{1},{2,3,4,5,6,9},{7,8}}=>2
{{1},{2,3,4,5,6,8,9},{7}}=>1
{{1,2},{3,4},{5,6},{7,8},{9,10}}=>5
{{1,4},{2,3},{5,6},{7,8},{9,10}}=>4
{{1,6},{2,3},{4,5},{7,8},{9,10}}=>4
{{1,8},{2,3},{4,5},{6,7},{9,10}}=>4
{{1,10},{2,3},{4,5},{6,7},{8,9}}=>4
{{1,2},{3,6},{4,5},{7,8},{9,10}}=>4
{{1,6},{2,5},{3,4},{7,8},{9,10}}=>3
{{1,8},{2,5},{3,4},{6,7},{9,10}}=>3
{{1,10},{2,5},{3,4},{6,7},{8,9}}=>3
{{1,2},{3,8},{4,5},{6,7},{9,10}}=>4
{{1,8},{2,7},{3,4},{5,6},{9,10}}=>3
{{1,10},{2,7},{3,4},{5,6},{8,9}}=>3
{{1,2},{3,10},{4,5},{6,7},{8,9}}=>4
{{1,10},{2,9},{3,4},{5,6},{7,8}}=>3
{{1,2},{3,4},{5,8},{6,7},{9,10}}=>4
{{1,4},{2,3},{5,8},{6,7},{9,10}}=>3
{{1,8},{2,3},{4,7},{5,6},{9,10}}=>3
{{1,10},{2,3},{4,7},{5,6},{8,9}}=>3
{{1,2},{3,8},{4,7},{5,6},{9,10}}=>3
{{1,8},{2,7},{3,6},{4,5},{9,10}}=>2
{{1,10},{2,7},{3,6},{4,5},{8,9}}=>2
{{1,2},{3,10},{4,7},{5,6},{8,9}}=>3
{{1,10},{2,9},{3,6},{4,5},{7,8}}=>2
{{1,2},{3,4},{5,10},{6,7},{8,9}}=>4
{{1,4},{2,3},{5,10},{6,7},{8,9}}=>3
{{1,10},{2,3},{4,9},{5,6},{7,8}}=>3
{{1,2},{3,10},{4,9},{5,6},{7,8}}=>3
{{1,10},{2,9},{3,8},{4,5},{6,7}}=>2
{{1,2},{3,4},{5,6},{7,10},{8,9}}=>4
{{1,4},{2,3},{5,6},{7,10},{8,9}}=>3
{{1,6},{2,3},{4,5},{7,10},{8,9}}=>3
{{1,10},{2,3},{4,5},{6,9},{7,8}}=>3
{{1,2},{3,6},{4,5},{7,10},{8,9}}=>3
{{1,6},{2,5},{3,4},{7,10},{8,9}}=>2
{{1,10},{2,5},{3,4},{6,9},{7,8}}=>2
{{1,2},{3,10},{4,5},{6,9},{7,8}}=>3
{{1,10},{2,9},{3,4},{5,8},{6,7}}=>2
{{1,2},{3,4},{5,10},{6,9},{7,8}}=>3
{{1,4},{2,3},{5,10},{6,9},{7,8}}=>2
{{1,10},{2,3},{4,9},{5,8},{6,7}}=>2
{{1,2},{3,10},{4,9},{5,8},{6,7}}=>2
{{1,10},{2,9},{3,8},{4,7},{5,6}}=>1
{{1,2,3,4,5,6,7,8,9},{10}}=>1
{{1},{2,3,4,5,6,7,8,9,10}}=>1
{{1,2,3,4,5,6,7,9},{8},{10}}=>1
{{1},{2,3,4,5,6,7,8,10},{9}}=>1
{{1,2,3,4,5,6,7,8,9,10},{11}}=>1
{{1},{2,3,4,5,6,7,8,9,10,11}}=>1
{{1,2},{3,4},{5,6},{7,8},{9,10},{11,12}}=>6
{{1,2},{3,4},{5,6},{7,8},{9,12},{10,11}}=>5
{{1,2},{3,4},{5,6},{7,10},{8,9},{11,12}}=>5
{{1,2},{3,4},{5,6},{7,12},{8,9},{10,11}}=>5
{{1,2},{3,4},{5,6},{7,12},{8,11},{9,10}}=>4
{{1,2},{3,4},{5,8},{6,7},{9,10},{11,12}}=>5
{{1,2},{3,4},{5,8},{6,7},{9,12},{10,11}}=>4
{{1,2},{3,4},{5,10},{6,7},{8,9},{11,12}}=>5
{{1,2},{3,4},{5,12},{6,7},{8,9},{10,11}}=>5
{{1,2},{3,4},{5,12},{6,7},{8,11},{9,10}}=>4
{{1,2},{3,4},{5,10},{6,9},{7,8},{11,12}}=>4
{{1,2},{3,4},{5,12},{6,9},{7,8},{10,11}}=>4
{{1,2},{3,4},{5,12},{6,11},{7,8},{9,10}}=>4
{{1,2},{3,4},{5,12},{6,11},{7,10},{8,9}}=>3
{{1,2},{3,6},{4,5},{7,8},{9,10},{11,12}}=>5
{{1,2},{3,6},{4,5},{7,8},{9,12},{10,11}}=>4
{{1,2},{3,6},{4,5},{7,10},{8,9},{11,12}}=>4
{{1,2},{3,6},{4,5},{7,12},{8,9},{10,11}}=>4
{{1,2},{3,6},{4,5},{7,12},{8,11},{9,10}}=>3
{{1,2},{3,8},{4,5},{6,7},{9,10},{11,12}}=>5
{{1,2},{3,8},{4,5},{6,7},{9,12},{10,11}}=>4
{{1,2},{3,10},{4,5},{6,7},{8,9},{11,12}}=>5
{{1,2},{3,12},{4,5},{6,7},{8,9},{10,11}}=>5
{{1,2},{3,12},{4,5},{6,7},{8,11},{9,10}}=>4
{{1,2},{3,10},{4,5},{6,9},{7,8},{11,12}}=>4
{{1,2},{3,12},{4,5},{6,9},{7,8},{10,11}}=>4
{{1,2},{3,12},{4,5},{6,11},{7,8},{9,10}}=>4
{{1,2},{3,12},{4,5},{6,11},{7,10},{8,9}}=>3
{{1,2},{3,8},{4,7},{5,6},{9,10},{11,12}}=>4
{{1,2},{3,8},{4,7},{5,6},{9,12},{10,11}}=>3
{{1,2},{3,10},{4,7},{5,6},{8,9},{11,12}}=>4
{{1,2},{3,12},{4,7},{5,6},{8,9},{10,11}}=>4
{{1,2},{3,12},{4,7},{5,6},{8,11},{9,10}}=>3
{{1,2},{3,10},{4,9},{5,6},{7,8},{11,12}}=>4
{{1,2},{3,12},{4,9},{5,6},{7,8},{10,11}}=>4
{{1,2},{3,12},{4,11},{5,6},{7,8},{9,10}}=>4
{{1,2},{3,12},{4,11},{5,6},{7,10},{8,9}}=>3
{{1,2},{3,10},{4,9},{5,8},{6,7},{11,12}}=>3
{{1,2},{3,12},{4,9},{5,8},{6,7},{10,11}}=>3
{{1,2},{3,12},{4,11},{5,8},{6,7},{9,10}}=>3
{{1,2},{3,12},{4,11},{5,10},{6,7},{8,9}}=>3
{{1,2},{3,12},{4,11},{5,10},{6,9},{7,8}}=>2
{{1,4},{2,3},{5,6},{7,8},{9,10},{11,12}}=>5
{{1,4},{2,3},{5,6},{7,8},{9,12},{10,11}}=>4
{{1,4},{2,3},{5,6},{7,10},{8,9},{11,12}}=>4
{{1,4},{2,3},{5,6},{7,12},{8,9},{10,11}}=>4
{{1,4},{2,3},{5,6},{7,12},{8,11},{9,10}}=>3
{{1,4},{2,3},{5,8},{6,7},{9,10},{11,12}}=>4
{{1,4},{2,3},{5,8},{6,7},{9,12},{10,11}}=>3
{{1,4},{2,3},{5,10},{6,7},{8,9},{11,12}}=>4
{{1,4},{2,3},{5,12},{6,7},{8,9},{10,11}}=>4
{{1,4},{2,3},{5,12},{6,7},{8,11},{9,10}}=>3
{{1,4},{2,3},{5,10},{6,9},{7,8},{11,12}}=>3
{{1,4},{2,3},{5,12},{6,9},{7,8},{10,11}}=>3
{{1,4},{2,3},{5,12},{6,11},{7,8},{9,10}}=>3
{{1,4},{2,3},{5,12},{6,11},{7,10},{8,9}}=>2
{{1,6},{2,3},{4,5},{7,8},{9,10},{11,12}}=>5
{{1,6},{2,3},{4,5},{7,8},{9,12},{10,11}}=>4
{{1,6},{2,3},{4,5},{7,10},{8,9},{11,12}}=>4
{{1,6},{2,3},{4,5},{7,12},{8,9},{10,11}}=>4
{{1,6},{2,3},{4,5},{7,12},{8,11},{9,10}}=>3
{{1,8},{2,3},{4,5},{6,7},{9,10},{11,12}}=>5
{{1,8},{2,3},{4,5},{6,7},{9,12},{10,11}}=>4
{{1,10},{2,3},{4,5},{6,7},{8,9},{11,12}}=>5
{{1,12},{2,3},{4,5},{6,7},{8,9},{10,11}}=>5
{{1,12},{2,3},{4,5},{6,7},{8,11},{9,10}}=>4
{{1,10},{2,3},{4,5},{6,9},{7,8},{11,12}}=>4
{{1,12},{2,3},{4,5},{6,9},{7,8},{10,11}}=>4
{{1,12},{2,3},{4,5},{6,11},{7,8},{9,10}}=>4
{{1,12},{2,3},{4,5},{6,11},{7,10},{8,9}}=>3
{{1,8},{2,3},{4,7},{5,6},{9,10},{11,12}}=>4
{{1,8},{2,3},{4,7},{5,6},{9,12},{10,11}}=>3
{{1,10},{2,3},{4,7},{5,6},{8,9},{11,12}}=>4
{{1,12},{2,3},{4,7},{5,6},{8,9},{10,11}}=>4
{{1,12},{2,3},{4,7},{5,6},{8,11},{9,10}}=>3
{{1,10},{2,3},{4,9},{5,6},{7,8},{11,12}}=>4
{{1,12},{2,3},{4,9},{5,6},{7,8},{10,11}}=>4
{{1,12},{2,3},{4,11},{5,6},{7,8},{9,10}}=>4
{{1,12},{2,3},{4,11},{5,6},{7,10},{8,9}}=>3
{{1,10},{2,3},{4,9},{5,8},{6,7},{11,12}}=>3
{{1,12},{2,3},{4,9},{5,8},{6,7},{10,11}}=>3
{{1,12},{2,3},{4,11},{5,8},{6,7},{9,10}}=>3
{{1,12},{2,3},{4,11},{5,10},{6,7},{8,9}}=>3
{{1,12},{2,3},{4,11},{5,10},{6,9},{7,8}}=>2
{{1,6},{2,5},{3,4},{7,8},{9,10},{11,12}}=>4
{{1,6},{2,5},{3,4},{7,8},{9,12},{10,11}}=>3
{{1,6},{2,5},{3,4},{7,10},{8,9},{11,12}}=>3
{{1,6},{2,5},{3,4},{7,12},{8,9},{10,11}}=>3
{{1,6},{2,5},{3,4},{7,12},{8,11},{9,10}}=>2
{{1,8},{2,5},{3,4},{6,7},{9,10},{11,12}}=>4
{{1,8},{2,5},{3,4},{6,7},{9,12},{10,11}}=>3
{{1,10},{2,5},{3,4},{6,7},{8,9},{11,12}}=>4
{{1,12},{2,5},{3,4},{6,7},{8,9},{10,11}}=>4
{{1,12},{2,5},{3,4},{6,7},{8,11},{9,10}}=>3
{{1,10},{2,5},{3,4},{6,9},{7,8},{11,12}}=>3
{{1,12},{2,5},{3,4},{6,9},{7,8},{10,11}}=>3
{{1,12},{2,5},{3,4},{6,11},{7,8},{9,10}}=>3
{{1,12},{2,5},{3,4},{6,11},{7,10},{8,9}}=>2
{{1,8},{2,7},{3,4},{5,6},{9,10},{11,12}}=>4
{{1,8},{2,7},{3,4},{5,6},{9,12},{10,11}}=>3
{{1,10},{2,7},{3,4},{5,6},{8,9},{11,12}}=>4
{{1,12},{2,7},{3,4},{5,6},{8,9},{10,11}}=>4
{{1,12},{2,7},{3,4},{5,6},{8,11},{9,10}}=>3
{{1,10},{2,9},{3,4},{5,6},{7,8},{11,12}}=>4
{{1,12},{2,9},{3,4},{5,6},{7,8},{10,11}}=>4
{{1,12},{2,11},{3,4},{5,6},{7,8},{9,10}}=>4
{{1,12},{2,11},{3,4},{5,6},{7,10},{8,9}}=>3
{{1,10},{2,9},{3,4},{5,8},{6,7},{11,12}}=>3
{{1,12},{2,9},{3,4},{5,8},{6,7},{10,11}}=>3
{{1,12},{2,11},{3,4},{5,8},{6,7},{9,10}}=>3
{{1,12},{2,11},{3,4},{5,10},{6,7},{8,9}}=>3
{{1,12},{2,11},{3,4},{5,10},{6,9},{7,8}}=>2
{{1,8},{2,7},{3,6},{4,5},{9,10},{11,12}}=>3
{{1,8},{2,7},{3,6},{4,5},{9,12},{10,11}}=>2
{{1,10},{2,7},{3,6},{4,5},{8,9},{11,12}}=>3
{{1,12},{2,7},{3,6},{4,5},{8,9},{10,11}}=>3
{{1,12},{2,7},{3,6},{4,5},{8,11},{9,10}}=>2
{{1,10},{2,9},{3,6},{4,5},{7,8},{11,12}}=>3
{{1,12},{2,9},{3,6},{4,5},{7,8},{10,11}}=>3
{{1,12},{2,11},{3,6},{4,5},{7,8},{9,10}}=>3
{{1,12},{2,11},{3,6},{4,5},{7,10},{8,9}}=>2
{{1,10},{2,9},{3,8},{4,5},{6,7},{11,12}}=>3
{{1,12},{2,9},{3,8},{4,5},{6,7},{10,11}}=>3
{{1,12},{2,11},{3,8},{4,5},{6,7},{9,10}}=>3
{{1,12},{2,11},{3,10},{4,5},{6,7},{8,9}}=>3
{{1,12},{2,11},{3,10},{4,5},{6,9},{7,8}}=>2
{{1,10},{2,9},{3,8},{4,7},{5,6},{11,12}}=>2
{{1,12},{2,9},{3,8},{4,7},{5,6},{10,11}}=>2
{{1,12},{2,11},{3,8},{4,7},{5,6},{9,10}}=>2
{{1,12},{2,11},{3,10},{4,7},{5,6},{8,9}}=>2
{{1,12},{2,11},{3,10},{4,9},{5,6},{7,8}}=>2
{{1,12},{2,11},{3,10},{4,9},{5,8},{6,7}}=>1
search for individual values
searching the database for the individual values of this statistic
/
search for generating function
searching the database for statistics with the same generating function
Description
The excess length of a longest path consisting of elements and blocks of a set partition.
Let $p$ be a set partition of $\{1,\dots,n\}$. Let $G$ be the graph with edges $(i,i+1)$ for $i\in\{1,\dots,n-1\}$ and $(i, b)$, whenever $i$ is an element of a non-singleton block $b\in p$.
Then this statistic records the length of the longest path from $1$ to $n$ in $G$, reduced by $n$. Conjecturally, a longest path has more than $n$ vertices provided that the set partition has no singletons.
Let $p$ be a set partition of $\{1,\dots,n\}$. Let $G$ be the graph with edges $(i,i+1)$ for $i\in\{1,\dots,n-1\}$ and $(i, b)$, whenever $i$ is an element of a non-singleton block $b\in p$.
Then this statistic records the length of the longest path from $1$ to $n$ in $G$, reduced by $n$. Conjecturally, a longest path has more than $n$ vertices provided that the set partition has no singletons.
References
[1] user173856 Is every path with this property shorter than another path with the same endpoints? MathOverflow:319916
Code
def statistic(p): G = Graph([(i,i+1) for i in range(1,p.size())]) G.add_edges([(i, b) for b in p for i in b]) return G.longest_path(1, p.size()).num_verts()-p.size()
Created
Mar 01, 2021 at 16:15 by Martin Rubey
Updated
Mar 03, 2021 at 18:57 by Martin Rubey
searching the database
Sorry, this statistic was not found in the database
or
add this statistic to the database – it's very simple and we need your support!