Identifier
- St001710: Integer partitions ⟶ ℤ
Values
=>
Cc0002;cc-rep
[]=>1
[1]=>1
[2]=>2
[1,1]=>2
[3]=>1
[2,1]=>4
[1,1,1]=>4
[4]=>2
[3,1]=>1
[2,2]=>10
[2,1,1]=>10
[1,1,1,1]=>10
[5]=>1
[4,1]=>2
[3,2]=>2
[3,1,1]=>2
[2,2,1]=>26
[2,1,1,1]=>26
[1,1,1,1,1]=>26
[6]=>4
[5,1]=>1
[4,2]=>4
[4,1,1]=>4
[3,3]=>4
[3,2,1]=>4
[3,1,1,1]=>4
[2,2,2]=>76
[2,2,1,1]=>76
[2,1,1,1,1]=>76
[1,1,1,1,1,1]=>76
[7]=>1
[6,1]=>4
[5,2]=>2
[5,1,1]=>2
[4,3]=>2
[4,2,1]=>8
[4,1,1,1]=>8
[3,3,1]=>4
[3,2,2]=>10
[3,2,1,1]=>10
[3,1,1,1,1]=>10
[2,2,2,1]=>232
[2,2,1,1,1]=>232
[2,1,1,1,1,1]=>232
[1,1,1,1,1,1,1]=>232
[8]=>4
[7,1]=>1
[6,2]=>8
[6,1,1]=>8
[5,3]=>1
[5,2,1]=>4
[5,1,1,1]=>4
[4,4]=>12
[4,3,1]=>2
[4,2,2]=>20
[4,2,1,1]=>20
[4,1,1,1,1]=>20
[3,3,2]=>8
[3,3,1,1]=>8
[3,2,2,1]=>26
[3,2,1,1,1]=>26
[3,1,1,1,1,1]=>26
[2,2,2,2]=>764
[2,2,2,1,1]=>764
[2,2,1,1,1,1]=>764
[2,1,1,1,1,1,1]=>764
[1,1,1,1,1,1,1,1]=>764
search for individual values
searching the database for the individual values of this statistic
/
search for generating function
searching the database for statistics with the same generating function
Description
The number of permutations such that conjugation with a permutation of given cycle type yields the inverse permutation.
Let $\alpha$ be any permutation of cycle type $\lambda$. This statistic is the number of permutations $\pi$ such that
$$ \alpha\pi\alpha^{-1} = \pi^{-1}.$$
Let $\alpha$ be any permutation of cycle type $\lambda$. This statistic is the number of permutations $\pi$ such that
$$ \alpha\pi\alpha^{-1} = \pi^{-1}.$$
References
[1] Homolya, S., Szigeti, Jenő Solving equations in the symmetric group arXiv:2104.03593
Code
def statistic(la): total = 0 cycles = [] for p in la: cycles.append(tuple(range(total+1, total+p+1))) total += p a = Permutation(cycles) return sum(1 for pi in Permutations(len(a)) if pi*a*pi == a)
Created
Apr 09, 2021 at 11:05 by Martin Rubey
Updated
Apr 09, 2021 at 11:05 by Martin Rubey
searching the database
Sorry, this statistic was not found in the database
or
add this statistic to the database – it's very simple and we need your support!