edit this statistic or download as text // json
Identifier
Values
=>
Cc0020;cc-rep
([],1)=>1 ([],2)=>1 ([(0,1)],2)=>2 ([],3)=>1 ([(1,2)],3)=>2 ([(0,2),(1,2)],3)=>3 ([(0,1),(0,2),(1,2)],3)=>3 ([],4)=>1 ([(2,3)],4)=>2 ([(1,3),(2,3)],4)=>3 ([(0,3),(1,3),(2,3)],4)=>4 ([(0,3),(1,2)],4)=>3 ([(0,3),(1,2),(2,3)],4)=>3 ([(1,2),(1,3),(2,3)],4)=>3 ([(0,3),(1,2),(1,3),(2,3)],4)=>4 ([(0,2),(0,3),(1,2),(1,3)],4)=>4 ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)=>4 ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)=>4 ([],5)=>1 ([(3,4)],5)=>2 ([(2,4),(3,4)],5)=>3 ([(1,4),(2,4),(3,4)],5)=>4 ([(0,4),(1,4),(2,4),(3,4)],5)=>5 ([(1,4),(2,3)],5)=>3 ([(1,4),(2,3),(3,4)],5)=>3 ([(0,1),(2,4),(3,4)],5)=>3 ([(2,3),(2,4),(3,4)],5)=>3 ([(0,4),(1,4),(2,3),(3,4)],5)=>4 ([(1,4),(2,3),(2,4),(3,4)],5)=>4 ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)=>5 ([(1,3),(1,4),(2,3),(2,4)],5)=>4 ([(0,4),(1,2),(1,3),(2,4),(3,4)],5)=>4 ([(1,3),(1,4),(2,3),(2,4),(3,4)],5)=>4 ([(0,4),(1,3),(2,3),(2,4),(3,4)],5)=>4 ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)=>5 ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5)=>5 ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)=>5 ([(0,4),(1,3),(2,3),(2,4)],5)=>4 ([(0,1),(2,3),(2,4),(3,4)],5)=>4 ([(0,3),(1,2),(1,4),(2,4),(3,4)],5)=>4 ([(0,3),(0,4),(1,2),(1,4),(2,4),(3,4)],5)=>5 ([(0,3),(0,4),(1,2),(1,4),(2,3)],5)=>5 ([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)=>5 ([(0,3),(0,4),(1,2),(1,4),(2,3),(2,4),(3,4)],5)=>5 ([(0,4),(1,2),(1,3),(2,3),(2,4),(3,4)],5)=>4 ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)=>4 ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)=>5 ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)=>5 ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4)],5)=>5 ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,4),(3,4)],5)=>5 ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)=>5 ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)=>5 ([],6)=>1 ([(4,5)],6)=>2 ([(3,5),(4,5)],6)=>3 ([(2,5),(3,5),(4,5)],6)=>4 ([(1,5),(2,5),(3,5),(4,5)],6)=>5 ([(0,5),(1,5),(2,5),(3,5),(4,5)],6)=>6 ([(2,5),(3,4)],6)=>3 ([(2,5),(3,4),(4,5)],6)=>3 ([(1,2),(3,5),(4,5)],6)=>3 ([(3,4),(3,5),(4,5)],6)=>3 ([(1,5),(2,5),(3,4),(4,5)],6)=>4 ([(0,1),(2,5),(3,5),(4,5)],6)=>4 ([(2,5),(3,4),(3,5),(4,5)],6)=>4 ([(0,5),(1,5),(2,5),(3,4),(4,5)],6)=>5 ([(1,5),(2,5),(3,4),(3,5),(4,5)],6)=>5 ([(0,5),(1,5),(2,5),(3,4),(3,5),(4,5)],6)=>6 ([(2,4),(2,5),(3,4),(3,5)],6)=>4 ([(0,5),(1,5),(2,4),(3,4)],6)=>4 ([(1,5),(2,3),(2,4),(3,5),(4,5)],6)=>4 ([(0,5),(1,5),(2,3),(3,4),(4,5)],6)=>4 ([(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>4 ([(1,5),(2,4),(3,4),(3,5),(4,5)],6)=>4 ([(0,5),(1,5),(2,4),(3,4),(4,5)],6)=>4 ([(0,5),(1,5),(2,3),(2,4),(3,5),(4,5)],6)=>5 ([(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>5 ([(0,5),(1,5),(2,4),(3,4),(3,5),(4,5)],6)=>5 ([(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>6 ([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)=>5 ([(0,5),(1,4),(2,4),(2,5),(3,4),(3,5)],6)=>5 ([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)=>5 ([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>5 ([(0,5),(1,4),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>5 ([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>6 ([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)=>6 ([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>6 ([(0,5),(1,4),(2,3)],6)=>3 ([(1,5),(2,4),(3,4),(3,5)],6)=>4 ([(0,1),(2,5),(3,4),(4,5)],6)=>4 ([(1,2),(3,4),(3,5),(4,5)],6)=>4 ([(0,5),(1,4),(2,3),(3,5),(4,5)],6)=>4 ([(1,4),(2,3),(2,5),(3,5),(4,5)],6)=>4 ([(0,1),(2,5),(3,4),(3,5),(4,5)],6)=>4 ([(0,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6)=>5 ([(1,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6)=>5 ([(0,5),(1,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6)=>6 ([(1,4),(1,5),(2,3),(2,5),(3,4)],6)=>5 ([(0,5),(1,4),(2,3),(2,4),(3,5),(4,5)],6)=>4 ([(1,2),(1,5),(2,4),(3,4),(3,5),(4,5)],6)=>5 ([(0,5),(1,2),(1,4),(2,3),(3,5),(4,5)],6)=>5 ([(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6)=>4 ([(0,5),(1,4),(2,3),(3,4),(3,5),(4,5)],6)=>4 ([(0,5),(1,2),(1,5),(2,4),(3,4),(3,5),(4,5)],6)=>5 ([(0,5),(1,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>5 ([(1,4),(1,5),(2,3),(2,5),(3,4),(3,5),(4,5)],6)=>5 ([(0,5),(1,4),(1,5),(2,3),(2,5),(3,4),(3,5),(4,5)],6)=>6 ([(0,5),(1,4),(2,3),(2,4),(3,5)],6)=>4 ([(0,1),(2,4),(2,5),(3,4),(3,5)],6)=>4 ([(0,5),(1,5),(2,3),(2,4),(3,4)],6)=>4 ([(0,4),(1,2),(1,3),(2,5),(3,5),(4,5)],6)=>5 ([(0,4),(1,2),(1,5),(2,5),(3,4),(3,5)],6)=>5 ([(0,4),(1,2),(2,5),(3,4),(3,5),(4,5)],6)=>4 ([(0,1),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>4 ([(0,4),(1,4),(2,3),(2,5),(3,5),(4,5)],6)=>4 ([(0,3),(0,4),(1,2),(1,5),(2,5),(3,5),(4,5)],6)=>5 ([(0,3),(1,4),(1,5),(2,4),(2,5),(3,5),(4,5)],6)=>5 ([(0,4),(1,2),(1,5),(2,5),(3,4),(3,5),(4,5)],6)=>5 ([(0,1),(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>6 ([(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>4 ([(0,5),(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6)=>5 ([(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>5 ([(0,5),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>6 ([(0,1),(0,5),(1,4),(2,4),(2,5),(3,4),(3,5)],6)=>6 ([(0,3),(0,5),(1,3),(1,5),(2,4),(2,5),(3,4),(4,5)],6)=>6 ([(0,3),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>5 ([(0,5),(1,4),(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6)=>5 ([(0,1),(0,5),(1,4),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>6 ([(0,4),(0,5),(1,4),(1,5),(2,3),(2,5),(3,4),(3,5),(4,5)],6)=>6 ([(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5)],6)=>5 ([(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>5 ([(0,5),(1,4),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>5 ([(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>6 ([(0,4),(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5)],6)=>6 ([(0,4),(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>6 ([(0,5),(1,3),(1,4),(2,3),(2,4),(3,5),(4,5)],6)=>5 ([(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5)],6)=>5 ([(0,5),(1,3),(1,4),(2,3),(2,4),(2,5),(3,5),(4,5)],6)=>5 ([(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,5),(4,5)],6)=>5 ([(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,5),(4,5)],6)=>6 ([(0,4),(0,5),(1,2),(1,3),(2,5),(3,4)],6)=>5 ([(0,3),(0,5),(1,2),(1,5),(2,4),(3,4),(4,5)],6)=>5 ([(0,5),(1,2),(1,4),(2,3),(3,4),(3,5),(4,5)],6)=>5 ([(0,1),(0,2),(1,5),(2,4),(3,4),(3,5),(4,5)],6)=>5 ([(0,5),(1,4),(2,3),(2,4),(2,5),(3,4),(3,5)],6)=>5 ([(0,5),(1,3),(1,4),(2,4),(2,5),(3,4),(3,5)],6)=>5 ([(0,1),(0,5),(1,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>5 ([(0,4),(1,3),(1,5),(2,3),(2,4),(2,5),(3,5),(4,5)],6)=>5 ([(0,4),(0,5),(1,3),(1,5),(2,3),(2,4),(3,5),(4,5)],6)=>6 ([(0,4),(0,5),(1,3),(1,5),(2,3),(2,4),(2,5),(3,5),(4,5)],6)=>6 ([(0,4),(0,5),(1,2),(1,3),(2,4),(2,5),(3,4),(3,5)],6)=>5 ([(0,5),(1,2),(1,3),(1,4),(2,3),(2,4),(3,5),(4,5)],6)=>5 ([(0,4),(0,5),(1,2),(1,3),(1,5),(2,4),(2,5),(3,4),(3,5)],6)=>6 ([(0,4),(0,5),(1,2),(1,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>5 ([(0,4),(0,5),(1,2),(1,3),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>6 ([(0,5),(1,2),(1,3),(1,4),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>5 ([(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>5 ([(0,5),(1,3),(1,4),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>5 ([(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>6 ([(0,4),(0,5),(1,2),(1,4),(2,3),(2,5),(3,4),(3,5),(4,5)],6)=>6 ([(0,4),(0,5),(1,3),(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6)=>6 ([(0,4),(0,5),(1,3),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>6 ([(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>6 ([(0,3),(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5)],6)=>6 ([(0,1),(0,2),(0,3),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>6 ([(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5)],6)=>6 ([(0,3),(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,5),(4,5)],6)=>6 ([(0,3),(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>6 ([(0,4),(0,5),(1,2),(1,3),(2,3),(4,5)],6)=>5 ([(0,2),(1,4),(1,5),(2,3),(3,4),(3,5),(4,5)],6)=>5 ([(0,1),(0,5),(1,5),(2,3),(2,4),(3,4),(4,5)],6)=>5 ([(0,1),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>5 ([(0,1),(0,5),(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6)=>5 ([(0,1),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>5 ([(0,1),(0,5),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>6 ([(0,4),(0,5),(1,2),(1,3),(2,3),(2,5),(3,4),(4,5)],6)=>5 ([(0,4),(0,5),(1,2),(1,3),(1,4),(2,3),(2,5),(3,5),(4,5)],6)=>6 ([(0,3),(1,2),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>5 ([(0,3),(0,5),(1,2),(1,4),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>5 ([(0,1),(0,5),(1,4),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>6 ([(0,3),(0,5),(1,2),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>6 ([(0,3),(0,4),(0,5),(1,2),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)=>6 ([(0,3),(0,4),(0,5),(1,2),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>6 ([(0,4),(0,5),(1,3),(1,5),(2,3),(2,4),(2,5),(3,4)],6)=>6 ([(0,1),(0,5),(1,4),(2,3),(2,4),(2,5),(3,4),(3,5)],6)=>6 ([(0,3),(0,4),(1,2),(1,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6)=>6 ([(0,3),(0,4),(0,5),(1,2),(1,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6)=>6 ([(0,3),(0,4),(0,5),(1,2),(1,4),(1,5),(2,3),(2,5),(3,4)],6)=>6 ([(0,1),(0,3),(0,5),(1,2),(1,4),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>6 ([(0,4),(0,5),(1,2),(1,3),(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6)=>6 ([(0,1),(0,4),(0,5),(1,3),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>6 ([(0,3),(0,4),(0,5),(1,2),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>6 ([(0,2),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6)=>6 ([(0,4),(0,5),(1,2),(1,3),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>5 ([(0,4),(0,5),(1,2),(1,3),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>6 ([(0,5),(1,2),(1,3),(1,4),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>5 ([(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>5 ([(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>6 ([(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>6 ([(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>6 ([(0,3),(0,4),(0,5),(1,2),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5)],6)=>6 ([(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5)],6)=>6 ([(0,1),(0,4),(0,5),(1,2),(1,3),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>6 ([(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,5),(4,5)],6)=>6 ([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)=>6 ([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>6 ([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>6 ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>6 ([],7)=>1 ([(5,6)],7)=>2 ([(4,6),(5,6)],7)=>3 ([(3,6),(4,6),(5,6)],7)=>4 ([(2,6),(3,6),(4,6),(5,6)],7)=>5 ([(1,6),(2,6),(3,6),(4,6),(5,6)],7)=>6 ([(0,6),(1,6),(2,6),(3,6),(4,6),(5,6)],7)=>7 ([(3,6),(4,5)],7)=>3 ([(3,6),(4,5),(5,6)],7)=>3 ([(2,3),(4,6),(5,6)],7)=>3 ([(4,5),(4,6),(5,6)],7)=>3 ([(2,6),(3,6),(4,5),(5,6)],7)=>4 ([(1,2),(3,6),(4,6),(5,6)],7)=>4 ([(3,6),(4,5),(4,6),(5,6)],7)=>4 ([(1,6),(2,6),(3,6),(4,5),(5,6)],7)=>5 ([(0,1),(2,6),(3,6),(4,6),(5,6)],7)=>5 ([(2,6),(3,6),(4,5),(4,6),(5,6)],7)=>5 ([(0,6),(1,6),(2,6),(3,6),(4,5),(5,6)],7)=>6 ([(1,6),(2,6),(3,6),(4,5),(4,6),(5,6)],7)=>6 ([(0,6),(1,6),(2,6),(3,6),(4,5),(4,6),(5,6)],7)=>7 ([(3,5),(3,6),(4,5),(4,6)],7)=>4 ([(1,6),(2,6),(3,5),(4,5)],7)=>4 ([(2,6),(3,4),(3,5),(4,6),(5,6)],7)=>4 ([(1,6),(2,6),(3,4),(4,5),(5,6)],7)=>4 ([(0,6),(1,6),(2,6),(3,5),(4,5)],7)=>4 ([(3,5),(3,6),(4,5),(4,6),(5,6)],7)=>4 ([(2,6),(3,5),(4,5),(4,6),(5,6)],7)=>4 ([(1,6),(2,6),(3,5),(4,5),(5,6)],7)=>4 ([(1,6),(2,6),(3,4),(3,5),(4,6),(5,6)],7)=>5 ([(0,6),(1,6),(2,6),(3,4),(4,5),(5,6)],7)=>5 ([(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)=>5 ([(1,6),(2,6),(3,5),(4,5),(4,6),(5,6)],7)=>5 ([(0,6),(1,6),(2,6),(3,5),(4,5),(5,6)],7)=>5 ([(0,6),(1,6),(2,6),(3,5),(3,6),(4,5),(4,6)],7)=>6 ([(1,6),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)=>6 ([(0,6),(1,6),(2,6),(3,5),(4,5),(4,6),(5,6)],7)=>6 ([(0,6),(1,6),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)=>7 ([(2,5),(2,6),(3,5),(3,6),(4,5),(4,6)],7)=>5 ([(1,6),(2,5),(3,5),(3,6),(4,5),(4,6)],7)=>5 ([(0,6),(1,6),(2,5),(3,5),(4,5),(4,6)],7)=>5 ([(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6)],7)=>5 ([(0,6),(1,6),(2,5),(3,5),(3,6),(4,5),(4,6)],7)=>5 ([(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)=>5 ([(1,6),(2,5),(3,5),(3,6),(4,5),(4,6),(5,6)],7)=>5 ([(0,6),(1,6),(2,5),(3,5),(4,5),(4,6),(5,6)],7)=>5 ([(0,6),(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6)],7)=>6 ([(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)=>6 ([(0,6),(1,6),(2,5),(3,5),(3,6),(4,5),(4,6),(5,6)],7)=>6 ([(0,6),(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)=>7 ([(1,5),(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6)],7)=>6 ([(0,6),(1,5),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6)],7)=>6 ([(0,6),(1,5),(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6)],7)=>6 ([(1,5),(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)=>6 ([(0,6),(1,5),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)=>6 ([(0,6),(1,5),(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)=>7 ([(0,5),(0,6),(1,5),(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6)],7)=>7 ([(0,5),(0,6),(1,5),(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)=>7 ([(1,6),(2,5),(3,4)],7)=>3 ([(2,6),(3,5),(4,5),(4,6)],7)=>4 ([(1,2),(3,6),(4,5),(5,6)],7)=>4 ([(0,3),(1,2),(4,6),(5,6)],7)=>4 ([(2,3),(4,5),(4,6),(5,6)],7)=>4 ([(1,6),(2,5),(3,4),(4,6),(5,6)],7)=>4 ([(0,1),(2,6),(3,6),(4,5),(5,6)],7)=>4 ([(2,5),(3,4),(3,6),(4,6),(5,6)],7)=>4 ([(1,2),(3,6),(4,5),(4,6),(5,6)],7)=>4 ([(0,6),(1,6),(2,5),(3,4),(4,6),(5,6)],7)=>5 ([(1,5),(2,6),(3,4),(3,6),(4,6),(5,6)],7)=>5 ([(0,1),(2,6),(3,6),(4,5),(4,6),(5,6)],7)=>5 ([(2,5),(2,6),(3,4),(3,6),(4,6),(5,6)],7)=>5 ([(0,6),(1,6),(2,3),(3,6),(4,5),(4,6),(5,6)],7)=>6 ([(1,6),(2,5),(2,6),(3,4),(3,6),(4,6),(5,6)],7)=>6 ([(0,6),(1,6),(2,5),(2,6),(3,4),(3,6),(4,6),(5,6)],7)=>7 ([(2,5),(2,6),(3,4),(3,6),(4,5)],7)=>5 ([(1,6),(2,5),(3,4),(3,5),(4,6),(5,6)],7)=>4 ([(0,6),(1,6),(2,3),(3,5),(4,5),(4,6)],7)=>4 ([(2,3),(2,6),(3,5),(4,5),(4,6),(5,6)],7)=>5 ([(1,6),(2,3),(2,5),(3,4),(4,6),(5,6)],7)=>5 ([(2,6),(3,4),(3,5),(4,5),(4,6),(5,6)],7)=>4 ([(1,6),(2,5),(3,4),(4,5),(4,6),(5,6)],7)=>4 ([(0,6),(1,6),(2,5),(3,4),(3,6),(4,5),(5,6)],7)=>5 ([(1,6),(2,3),(2,6),(3,5),(4,5),(4,6),(5,6)],7)=>5 ([(0,6),(1,6),(2,3),(3,5),(4,5),(4,6),(5,6)],7)=>5 ([(0,6),(1,6),(2,3),(2,5),(3,4),(4,6),(5,6)],7)=>5 ([(1,6),(2,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)=>5 ([(0,6),(1,6),(2,5),(3,4),(4,5),(4,6),(5,6)],7)=>5 ([(2,5),(2,6),(3,4),(3,6),(4,5),(4,6),(5,6)],7)=>5 ([(0,6),(1,6),(2,3),(2,6),(3,5),(4,5),(4,6),(5,6)],7)=>6 ([(0,6),(1,6),(2,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)=>6 ([(1,6),(2,5),(2,6),(3,4),(3,6),(4,5),(4,6),(5,6)],7)=>6 ([(0,6),(1,6),(2,5),(2,6),(3,4),(3,6),(4,5),(4,6),(5,6)],7)=>7 ([(1,6),(2,5),(3,4),(3,5),(4,6)],7)=>4 ([(1,2),(3,5),(3,6),(4,5),(4,6)],7)=>4 ([(0,6),(1,5),(2,4),(3,4),(5,6)],7)=>4 ([(1,6),(2,6),(3,4),(3,5),(4,5)],7)=>4 ([(1,5),(2,3),(2,4),(3,6),(4,6),(5,6)],7)=>5 ([(0,6),(1,4),(2,3),(3,6),(4,5),(5,6)],7)=>4 ([(0,1),(2,6),(3,5),(3,6),(4,5),(4,6)],7)=>4 ([(1,5),(2,3),(2,6),(3,6),(4,5),(4,6)],7)=>5 ([(0,6),(1,3),(2,3),(4,5),(4,6),(5,6)],7)=>4 ([(1,5),(2,3),(3,6),(4,5),(4,6),(5,6)],7)=>4 ([(1,2),(3,5),(3,6),(4,5),(4,6),(5,6)],7)=>4 ([(0,6),(1,5),(2,5),(3,4),(4,6),(5,6)],7)=>4 ([(0,1),(2,6),(3,5),(4,5),(4,6),(5,6)],7)=>4 ([(1,5),(2,5),(3,4),(3,6),(4,6),(5,6)],7)=>4 ([(0,5),(1,6),(2,3),(2,4),(3,6),(4,6),(5,6)],7)=>5 ([(1,4),(1,5),(2,3),(2,6),(3,6),(4,6),(5,6)],7)=>5 ([(0,5),(1,6),(2,3),(2,6),(3,6),(4,5),(4,6)],7)=>5 ([(1,4),(2,5),(2,6),(3,5),(3,6),(4,6),(5,6)],7)=>5 ([(0,6),(1,5),(2,3),(3,6),(4,5),(4,6),(5,6)],7)=>5 ([(0,1),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)=>5 ([(1,5),(2,3),(2,6),(3,6),(4,5),(4,6),(5,6)],7)=>5 ([(0,6),(1,5),(2,5),(3,4),(3,6),(4,6),(5,6)],7)=>5 ([(0,6),(1,4),(1,5),(2,3),(2,6),(3,6),(4,6),(5,6)],7)=>6 ([(0,4),(1,6),(2,5),(2,6),(3,5),(3,6),(4,6),(5,6)],7)=>6 ([(1,2),(1,6),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)=>6 ([(0,6),(1,5),(2,3),(2,6),(3,6),(4,5),(4,6),(5,6)],7)=>6 ([(0,6),(1,2),(1,6),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)=>7 ([(0,6),(1,6),(2,6),(3,4),(3,5),(4,5)],7)=>4 ([(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)=>4 ([(0,6),(1,6),(2,6),(3,4),(3,5),(4,5),(5,6)],7)=>5 ([(1,6),(2,6),(3,4),(3,5),(4,5),(4,6),(5,6)],7)=>5 ([(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)=>5 ([(0,6),(1,6),(2,6),(3,4),(3,5),(4,5),(4,6),(5,6)],7)=>6 ([(1,6),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)=>6 ([(0,6),(1,6),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)=>7 ([(1,2),(1,6),(2,5),(3,5),(3,6),(4,5),(4,6)],7)=>6 ([(0,6),(1,5),(2,3),(2,5),(3,6),(4,5),(4,6)],7)=>5 ([(0,6),(1,4),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6)],7)=>5 ([(1,4),(1,6),(2,4),(2,6),(3,5),(3,6),(4,5),(5,6)],7)=>6 ([(0,6),(1,4),(2,4),(2,6),(3,5),(3,6),(4,5),(5,6)],7)=>5 ([(0,6),(1,2),(1,6),(2,5),(3,5),(3,6),(4,5),(4,6)],7)=>6 ([(1,4),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)=>5 ([(0,6),(1,5),(2,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)=>5 ([(1,6),(2,5),(2,6),(3,4),(3,5),(4,5),(4,6),(5,6)],7)=>5 ([(1,2),(1,6),(2,5),(3,5),(3,6),(4,5),(4,6),(5,6)],7)=>6 ([(0,6),(1,5),(2,5),(3,4),(3,6),(4,5),(4,6),(5,6)],7)=>5 ([(0,6),(1,5),(2,3),(2,5),(3,6),(4,5),(4,6),(5,6)],7)=>5 ([(0,6),(1,4),(1,6),(2,4),(2,6),(3,5),(3,6),(4,5),(5,6)],7)=>6 ([(0,6),(1,4),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)=>6 ([(1,5),(1,6),(2,5),(2,6),(3,4),(3,6),(4,5),(4,6),(5,6)],7)=>6 ([(0,6),(1,5),(2,5),(2,6),(3,4),(3,6),(4,5),(4,6),(5,6)],7)=>6 ([(0,6),(1,2),(1,6),(2,5),(3,5),(3,6),(4,5),(4,6),(5,6)],7)=>6 ([(0,6),(1,5),(1,6),(2,5),(2,6),(3,4),(3,6),(4,5),(4,6),(5,6)],7)=>7 ([(0,6),(1,4),(2,5),(2,6),(3,5),(3,6),(4,5)],7)=>5 ([(0,1),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6)],7)=>5 ([(0,6),(1,6),(2,3),(2,5),(3,5),(4,5),(4,6)],7)=>5 ([(0,4),(1,5),(1,6),(2,5),(2,6),(3,5),(3,6),(4,6)],7)=>6 ([(0,5),(1,2),(1,6),(2,6),(3,5),(3,6),(4,5),(4,6)],7)=>6 ([(0,6),(1,4),(2,5),(2,6),(3,5),(3,6),(4,5),(5,6)],7)=>5 ([(0,1),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)=>5 ([(0,6),(1,6),(2,3),(2,5),(3,5),(4,5),(4,6),(5,6)],7)=>5 ([(0,1),(0,6),(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6)],7)=>6 ([(0,4),(1,5),(1,6),(2,5),(2,6),(3,5),(3,6),(4,6),(5,6)],7)=>6 ([(0,5),(1,2),(1,6),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)=>6 ([(0,1),(0,6),(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)=>7 ([(0,6),(1,6),(2,5),(2,6),(3,4),(3,5),(4,5),(4,6)],7)=>5 ([(1,6),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6)],7)=>5 ([(0,6),(1,6),(2,3),(3,4),(3,5),(4,5),(4,6),(5,6)],7)=>5 ([(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)=>5 ([(1,6),(2,5),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)=>5 ([(0,6),(1,6),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6)],7)=>6 ([(0,6),(1,6),(2,5),(2,6),(3,4),(3,5),(4,5),(4,6),(5,6)],7)=>6 ([(1,6),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)=>6 ([(0,6),(1,6),(2,5),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)=>6 ([(0,6),(1,6),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)=>7 ([(0,4),(1,5),(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6)],7)=>6 ([(0,6),(1,5),(1,6),(2,5),(2,6),(3,4),(3,5),(4,5),(4,6)],7)=>6 ([(0,1),(0,6),(1,5),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6)],7)=>7
search for individual values
searching the database for the individual values of this statistic
/ search for generating function
searching the database for statistics with the same generating function
click to show known generating functions       
Description
The harmonious chromatic number of a graph.
A harmonious colouring is a proper vertex colouring such that any pair of colours appears at most once on adjacent vertices.
Code
def statistic(G):
    G = G.canonical_label().copy(immutable=True)
    return statistic_aux(G)

@cached_function
def statistic_aux(G):
    """
    sage: N = 8; lG = [G for n in range(1, N) for G in graphs(n)]
    sage: all(statistic(G) >= max(G.degree()) + 1 for G in lG)
    True

    sage: all(statistic(G) <= 2*max(G.degree())*sqrt(G.num_verts()-1) for G in lG if G.edges())
    True

    sage: all((statistic(G) == G.num_verts()) == (G.diameter() <= 2) for G in lG)
    True

    sage: all(statistic(graphs.CompleteGraph(n)) == n for n in range(6))
    True

    sage: def min_k(G):
    ....:     k = 0
    ....:     while True:
    ....:         if binomial(k, 2) >= G.num_edges():
    ....:             return k
    ....:         k += 1

    sage: def harmonious_path(n):
    ....:     k = min_k(graphs.PathGraph(n))
    ....:     if is_odd(k) or (k-2)//2 <= binomial(k, 2) - n  + 1 <= k-2:
    ....:         return k
    ....:     return k+1

    sage: all(statistic(graphs.PathGraph(n)) == harmonious_path(n) for n in range(1, 8))
    True
    """
    G = G.relabel(inplace=False)
    n = G.num_verts()
    K = range(n) # colors
    Kp = [(i, j) for i in K for j in range(i+1, n)] # pairs of colours
    V = G.vertices()
    E = [tuple(sorted(e)) for e in G.edges(labels=False)]
    P = MixedIntegerLinearProgram(maximization=False)
    # y[c] == 1 if c is used
    y = P.new_variable(binary=True, indices=K)
    # x[(v,c)] == 1 if v is colored with c
    x = P.new_variable(binary=True, indices=cartesian_product([V, K]))
    # z[e, c, d] == 1 if the edge e is incident to colours c < d
    z = P.new_variable(binary=True, indices=cartesian_product([E, Kp]))
    P.set_objective(sum(y[c] for c in K))
    for v in V:
        # one color per node
        P.add_constraint(sum(x[(v,c)] for c in K) == 1)
        for c in K:
            # if vertex v takes color c, activate y[c]
            P.add_constraint(x[(v,c)] <= y[c])
    for u, v in E:
        for c in K:
            # the colouring is proper
            P.add_constraint(x[(u,c)] + x[(v,c)] <= 1)

        if E:
            for c, d in Kp:
                P.add_constraint(x[(u,c)] + x[(v,d)] <= 1 + z[((u, v), (c, d))])
                P.add_constraint(x[(u,d)] + x[(v,c)] <= 1 + z[((u, v), (c, d))])

    if E:
        for c, d in Kp:
            P.add_constraint(sum(z[((u, v), (c, d))] for u, v in E) <= 1)

    return ZZ(P.solve())

Created
Jun 03, 2021 at 09:53 by Martin Rubey
Updated
Jun 03, 2021 at 09:53 by Martin Rubey