***************************************************************************** * www.FindStat.org - The Combinatorial Statistic Finder * * * * Copyright (C) 2019 The FindStatCrew * * * * This information is distributed in the hope that it will be useful, * * but WITHOUT ANY WARRANTY; without even the implied warranty of * * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. * ***************************************************************************** ----------------------------------------------------------------------------- Statistic identifier: St001754 ----------------------------------------------------------------------------- Collection: Lattices ----------------------------------------------------------------------------- Description: The number of tolerances of a finite lattice. Let $L$ be a lattice. A tolerance $\tau$ is a reflexive and symmetric relation on $L$ which is compatible with meet and join. Equivalently, a tolerance of $L$ is the image of a congruence by a surjective lattice homomorphism onto $L$. The number of tolerances of a chain of $n$ elements is the Catalan number $\frac{1}{n+1}\binom{2n}{n}$, see [2]. ----------------------------------------------------------------------------- References: [1] Chajda, I., Zelinka, B. Tolerance relation on lattices [[MathSciNet:0360380]] [2] Bandelt, H.-J. Tolerante Catalanzahlen [[MathSciNet:0725192]] ----------------------------------------------------------------------------- Code: ----------------------------------------------------------------------------- Statistic values: ([],1) => 1 ([(0,1)],2) => 2 ([(0,2),(2,1)],3) => 5 ([(0,1),(0,2),(1,3),(2,3)],4) => 4 ([(0,3),(2,1),(3,2)],4) => 14 ([(0,1),(0,2),(0,3),(1,4),(2,4),(3,4)],5) => 2 ([(0,2),(0,3),(1,4),(2,4),(3,1)],5) => 5 ([(0,3),(1,4),(2,4),(3,1),(3,2)],5) => 13 ([(0,4),(2,3),(3,1),(4,2)],5) => 42 ([(0,2),(0,3),(2,4),(3,4),(4,1)],5) => 13 ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,5),(4,5)],6) => 2 ([(0,2),(0,3),(0,4),(1,5),(2,5),(3,5),(4,1)],6) => 3 ([(0,3),(0,4),(1,5),(2,5),(3,5),(4,1),(4,2)],6) => 3 ([(0,4),(1,5),(2,5),(3,5),(4,1),(4,2),(4,3)],6) => 8 ([(0,4),(1,5),(2,5),(3,2),(4,1),(4,3)],6) => 17 ([(0,4),(1,5),(2,5),(4,1),(4,2),(5,3)],6) => 48 ([(0,2),(0,4),(1,5),(2,5),(3,1),(4,3)],6) => 8 ([(0,3),(1,5),(2,5),(3,4),(4,1),(4,2)],6) => 42 ([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(4,5)],6) => 3 ([(0,2),(0,3),(2,5),(3,5),(4,1),(5,4)],6) => 42 ([(0,2),(0,3),(0,4),(2,5),(3,5),(4,5),(5,1)],6) => 8 ([(0,3),(0,4),(1,5),(2,5),(3,2),(4,1)],6) => 7 ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6) => 10 ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => 132 ([(0,3),(0,4),(1,5),(3,5),(4,1),(5,2)],6) => 17 ([],0) => 1 ----------------------------------------------------------------------------- Created: Dec 13, 2021 at 11:51 by Martin Rubey ----------------------------------------------------------------------------- Last Updated: Dec 13, 2021 at 11:51 by Martin Rubey