Values
=>
Cc0020;cc-rep
([],1)=>0
([],2)=>0
([(0,1)],2)=>1
([],3)=>0
([(1,2)],3)=>1
([(0,2),(1,2)],3)=>0
([(0,1),(0,2),(1,2)],3)=>3
([],4)=>0
([(2,3)],4)=>2
([(1,3),(2,3)],4)=>0
([(0,3),(1,3),(2,3)],4)=>0
([(0,3),(1,2)],4)=>4
([(0,3),(1,2),(2,3)],4)=>1
([(1,2),(1,3),(2,3)],4)=>3
([(0,3),(1,2),(1,3),(2,3)],4)=>1
([(0,2),(0,3),(1,2),(1,3)],4)=>0
([(0,2),(0,3),(1,2),(1,3),(2,3)],4)=>2
([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)=>12
([],5)=>0
([(3,4)],5)=>6
([(2,4),(3,4)],5)=>0
([(1,4),(2,4),(3,4)],5)=>0
([(0,4),(1,4),(2,4),(3,4)],5)=>0
([(1,4),(2,3)],5)=>4
([(1,4),(2,3),(3,4)],5)=>1
([(0,1),(2,4),(3,4)],5)=>2
([(2,3),(2,4),(3,4)],5)=>6
([(0,4),(1,4),(2,3),(3,4)],5)=>0
([(1,4),(2,3),(2,4),(3,4)],5)=>1
([(0,4),(1,4),(2,3),(2,4),(3,4)],5)=>2
([(1,3),(1,4),(2,3),(2,4)],5)=>0
([(0,4),(1,2),(1,3),(2,4),(3,4)],5)=>0
([(1,3),(1,4),(2,3),(2,4),(3,4)],5)=>2
([(0,4),(1,3),(2,3),(2,4),(3,4)],5)=>1
([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)=>0
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5)=>0
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)=>6
([(0,4),(1,3),(2,3),(2,4)],5)=>0
([(0,1),(2,3),(2,4),(3,4)],5)=>6
([(0,3),(1,2),(1,4),(2,4),(3,4)],5)=>1
([(0,3),(0,4),(1,2),(1,4),(2,4),(3,4)],5)=>4
([(0,3),(0,4),(1,2),(1,4),(2,3)],5)=>5
([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)=>0
([(0,3),(0,4),(1,2),(1,4),(2,3),(2,4),(3,4)],5)=>1
([(0,4),(1,2),(1,3),(2,3),(2,4),(3,4)],5)=>1
([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)=>12
([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)=>3
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)=>2
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4)],5)=>2
([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,4),(3,4)],5)=>0
([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)=>6
([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)=>60
([],6)=>0
([(4,5)],6)=>24
([(3,5),(4,5)],6)=>0
([(2,5),(3,5),(4,5)],6)=>0
([(1,5),(2,5),(3,5),(4,5)],6)=>0
([(0,5),(1,5),(2,5),(3,5),(4,5)],6)=>0
([(2,5),(3,4)],6)=>8
([(2,5),(3,4),(4,5)],6)=>2
([(1,2),(3,5),(4,5)],6)=>2
([(3,4),(3,5),(4,5)],6)=>18
([(1,5),(2,5),(3,4),(4,5)],6)=>0
([(0,1),(2,5),(3,5),(4,5)],6)=>6
([(2,5),(3,4),(3,5),(4,5)],6)=>2
([(0,5),(1,5),(2,5),(3,4),(4,5)],6)=>0
([(1,5),(2,5),(3,4),(3,5),(4,5)],6)=>2
([(0,5),(1,5),(2,5),(3,4),(3,5),(4,5)],6)=>6
([(2,4),(2,5),(3,4),(3,5)],6)=>0
([(0,5),(1,5),(2,4),(3,4)],6)=>0
([(1,5),(2,3),(2,4),(3,5),(4,5)],6)=>0
([(0,5),(1,5),(2,3),(3,4),(4,5)],6)=>0
([(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>4
([(1,5),(2,4),(3,4),(3,5),(4,5)],6)=>1
([(0,5),(1,5),(2,4),(3,4),(4,5)],6)=>4
([(0,5),(1,5),(2,3),(2,4),(3,5),(4,5)],6)=>0
([(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>0
([(0,5),(1,5),(2,4),(3,4),(3,5),(4,5)],6)=>0
([(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>0
([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)=>0
([(0,5),(1,4),(2,4),(2,5),(3,4),(3,5)],6)=>0
([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)=>0
([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>6
([(0,5),(1,4),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>2
([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>0
([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)=>0
([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>24
([(0,5),(1,4),(2,3)],6)=>24
([(1,5),(2,4),(3,4),(3,5)],6)=>0
([(0,1),(2,5),(3,4),(4,5)],6)=>2
([(1,2),(3,4),(3,5),(4,5)],6)=>6
([(0,5),(1,4),(2,3),(3,5),(4,5)],6)=>0
([(1,4),(2,3),(2,5),(3,5),(4,5)],6)=>1
([(0,1),(2,5),(3,4),(3,5),(4,5)],6)=>2
([(0,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6)=>1
([(1,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6)=>4
([(0,5),(1,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6)=>4
([(1,4),(1,5),(2,3),(2,5),(3,4)],6)=>5
([(0,5),(1,4),(2,3),(2,4),(3,5),(4,5)],6)=>0
([(1,2),(1,5),(2,4),(3,4),(3,5),(4,5)],6)=>0
([(0,5),(1,2),(1,4),(2,3),(3,5),(4,5)],6)=>1
([(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6)=>1
([(0,5),(1,4),(2,3),(3,4),(3,5),(4,5)],6)=>3
([(0,5),(1,2),(1,5),(2,4),(3,4),(3,5),(4,5)],6)=>0
([(0,5),(1,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>0
([(1,4),(1,5),(2,3),(2,5),(3,4),(3,5),(4,5)],6)=>1
([(0,5),(1,4),(1,5),(2,3),(2,5),(3,4),(3,5),(4,5)],6)=>1
([(0,5),(1,4),(2,3),(2,4),(3,5)],6)=>1
([(0,1),(2,4),(2,5),(3,4),(3,5)],6)=>8
([(0,5),(1,5),(2,3),(2,4),(3,4)],6)=>6
([(0,4),(1,2),(1,3),(2,5),(3,5),(4,5)],6)=>0
([(0,4),(1,2),(1,5),(2,5),(3,4),(3,5)],6)=>1
([(0,4),(1,2),(2,5),(3,4),(3,5),(4,5)],6)=>0
([(0,1),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>4
([(0,4),(1,4),(2,3),(2,5),(3,5),(4,5)],6)=>2
([(0,3),(0,4),(1,2),(1,5),(2,5),(3,5),(4,5)],6)=>2
([(0,3),(1,4),(1,5),(2,4),(2,5),(3,5),(4,5)],6)=>0
([(0,4),(1,2),(1,5),(2,5),(3,4),(3,5),(4,5)],6)=>1
([(0,1),(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>2
([(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>24
([(0,5),(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6)=>2
([(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>3
([(0,5),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>6
([(0,1),(0,5),(1,4),(2,4),(2,5),(3,4),(3,5)],6)=>2
([(0,3),(0,5),(1,3),(1,5),(2,4),(2,5),(3,4),(4,5)],6)=>0
([(0,3),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>2
([(0,5),(1,4),(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6)=>0
([(0,1),(0,5),(1,4),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>0
([(0,4),(0,5),(1,4),(1,5),(2,3),(2,5),(3,4),(3,5),(4,5)],6)=>0
([(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5)],6)=>1
([(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>2
([(0,5),(1,4),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>2
([(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>1
([(0,4),(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5)],6)=>4
([(0,4),(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>4
([(0,5),(1,3),(1,4),(2,3),(2,4),(3,5),(4,5)],6)=>0
([(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5)],6)=>2
([(0,5),(1,3),(1,4),(2,3),(2,4),(2,5),(3,5),(4,5)],6)=>0
([(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,5),(4,5)],6)=>0
([(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,5),(4,5)],6)=>0
([(0,4),(0,5),(1,2),(1,3),(2,5),(3,4)],6)=>0
([(0,3),(0,5),(1,2),(1,5),(2,4),(3,4),(4,5)],6)=>2
([(0,5),(1,2),(1,4),(2,3),(3,4),(3,5),(4,5)],6)=>0
([(0,1),(0,2),(1,5),(2,4),(3,4),(3,5),(4,5)],6)=>1
([(0,5),(1,4),(2,3),(2,4),(2,5),(3,4),(3,5)],6)=>2
([(0,5),(1,3),(1,4),(2,4),(2,5),(3,4),(3,5)],6)=>0
([(0,1),(0,5),(1,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>0
([(0,4),(1,3),(1,5),(2,3),(2,4),(2,5),(3,5),(4,5)],6)=>0
([(0,4),(0,5),(1,3),(1,5),(2,3),(2,4),(3,5),(4,5)],6)=>0
([(0,4),(0,5),(1,3),(1,5),(2,3),(2,4),(2,5),(3,5),(4,5)],6)=>0
([(0,4),(0,5),(1,2),(1,3),(2,4),(2,5),(3,4),(3,5)],6)=>0
([(0,5),(1,2),(1,3),(1,4),(2,3),(2,4),(3,5),(4,5)],6)=>2
([(0,4),(0,5),(1,2),(1,3),(1,5),(2,4),(2,5),(3,4),(3,5)],6)=>0
([(0,4),(0,5),(1,2),(1,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>2
([(0,4),(0,5),(1,2),(1,3),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>0
([(0,5),(1,2),(1,3),(1,4),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>0
([(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>6
([(0,5),(1,3),(1,4),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>1
([(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>2
([(0,4),(0,5),(1,2),(1,4),(2,3),(2,5),(3,4),(3,5),(4,5)],6)=>0
([(0,4),(0,5),(1,3),(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6)=>3
([(0,4),(0,5),(1,3),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>1
([(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>2
([(0,3),(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5)],6)=>36
([(0,1),(0,2),(0,3),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>6
([(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5)],6)=>0
([(0,3),(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,5),(4,5)],6)=>0
([(0,3),(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>18
([(0,4),(0,5),(1,2),(1,3),(2,3),(4,5)],6)=>36
([(0,2),(1,4),(1,5),(2,3),(3,4),(3,5),(4,5)],6)=>1
([(0,1),(0,5),(1,5),(2,3),(2,4),(3,4),(4,5)],6)=>4
([(0,1),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>24
([(0,1),(0,5),(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6)=>2
([(0,1),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>3
([(0,1),(0,5),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>6
([(0,4),(0,5),(1,2),(1,3),(2,3),(2,5),(3,4),(4,5)],6)=>0
([(0,4),(0,5),(1,2),(1,3),(1,4),(2,3),(2,5),(3,5),(4,5)],6)=>1
([(0,3),(1,2),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>2
([(0,3),(0,5),(1,2),(1,4),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>1
([(0,1),(0,5),(1,4),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>2
([(0,3),(0,5),(1,2),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>1
([(0,3),(0,4),(0,5),(1,2),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)=>8
([(0,3),(0,4),(0,5),(1,2),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>8
([(0,4),(0,5),(1,3),(1,5),(2,3),(2,4),(2,5),(3,4)],6)=>1
([(0,1),(0,5),(1,4),(2,3),(2,4),(2,5),(3,4),(3,5)],6)=>2
([(0,3),(0,4),(1,2),(1,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6)=>1
([(0,3),(0,4),(0,5),(1,2),(1,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6)=>5
([(0,3),(0,4),(0,5),(1,2),(1,4),(1,5),(2,3),(2,5),(3,4)],6)=>6
([(0,1),(0,3),(0,5),(1,2),(1,4),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>0
([(0,4),(0,5),(1,2),(1,3),(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6)=>0
([(0,1),(0,4),(0,5),(1,3),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>0
([(0,3),(0,4),(0,5),(1,2),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>2
([(0,2),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6)=>1
([(0,4),(0,5),(1,2),(1,3),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>4
([(0,4),(0,5),(1,2),(1,3),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>1
([(0,5),(1,2),(1,3),(1,4),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>3
([(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>60
([(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>12
([(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>6
([(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>6
([(0,3),(0,4),(0,5),(1,2),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5)],6)=>2
([(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5)],6)=>6
([(0,1),(0,4),(0,5),(1,2),(1,3),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>4
([(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,5),(4,5)],6)=>2
([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)=>0
([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>8
([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>24
([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>360
search for individual values
searching the database for the individual values of this statistic
/
search for generating function
searching the database for statistics with the same generating function
Description
The number of odd automorphisms of a graph.
Let $D$ be an arbitrary orientation of a graph $G$. Then an automorphism of $G$ is odd, if it reverses the orientation of an odd number of edges of $D$.
The graphs on $n$ vertices without any odd automorphisms are equinumerous with the number of non-isomorphic $n$-team tournaments, see [2].
The odd automorphisms of the complete graphs are precisely the even permutations.
Let $D$ be an arbitrary orientation of a graph $G$. Then an automorphism of $G$ is odd, if it reverses the orientation of an odd number of edges of $D$.
The graphs on $n$ vertices without any odd automorphisms are equinumerous with the number of non-isomorphic $n$-team tournaments, see [2].
The odd automorphisms of the complete graphs are precisely the even permutations.
References
[1] Number of outcomes of unlabeled n-team round-robin tournaments. OEIS:A000568
[2] Royle, G. F., Praeger, C. E., Glasby, S. P., Freedman, S. D., Devillers, A. Tournaments and Even Graphs are Equinumerous arXiv:2204.01947
[2] Royle, G. F., Praeger, C. E., Glasby, S. P., Freedman, S. D., Devillers, A. Tournaments and Even Graphs are Equinumerous arXiv:2204.01947
Code
def is_odd_automorphism(D, g): count = 0 for a, b in D.edges(labels=False): c, d = g(a), g(b) if D.has_edge(c, d) and not D.has_edge(d, c): pass elif D.has_edge(d, c) and not D.has_edge(c, d): count += 1 else: raise ValueError("%s is mapped to %s" % ((a,b), (c,d))) return is_odd(count) def statistic(G): D = next(G.orientations()) count = 0 for g in G.automorphism_group(): if is_odd_automorphism(D, g): count += 1 return count
Created
Apr 06, 2022 at 10:26 by Martin Rubey
Updated
Apr 27, 2022 at 10:37 by Martin Rubey
searching the database
Sorry, this statistic was not found in the database
or
add this statistic to the database – it's very simple and we need your support!