edit this statistic or download as text // json
Identifier
Values
=>
Cc0022;cc-rep
['A',1]=>2 ['A',2]=>3 ['B',2]=>3 ['G',2]=>3 ['A',3]=>5 ['B',3]=>6 ['C',3]=>6 ['A',4]=>7 ['B',4]=>10 ['C',4]=>10 ['D',4]=>7 ['F',4]=>8 ['A',5]=>11 ['B',5]=>16 ['C',5]=>16 ['D',5]=>12 ['A',6]=>15 ['B',6]=>25 ['C',6]=>25 ['D',6]=>19 ['E',6]=>17 ['A',7]=>22 ['B',7]=>38 ['C',7]=>38 ['D',7]=>27 ['E',7]=>29 ['A',8]=>30 ['B',8]=>56 ['C',8]=>56 ['D',8]=>42 ['E',8]=>41 ['C',2]=>3
search for individual values
searching the database for the individual values of this statistic
/ search for generating function
searching the database for statistics with the same generating function
click to show known generating functions       
Description
The number of types of parabolic subgroups of the associated Weyl group.
Let $W$ be a Weyl group with simple generators $\mathcal{S} \subseteq W$. A subgroup of $W$ generated by a subset $X \subseteq \mathcal{S}$ is called standard parabolic subgroup. A parabolic subgroup is a subgroup of $W$ that is conjugate to a standard parabolic subgroup.
This is the number of all pairwise different types of subgroups of $W$ obtained as (standard) parabolic subgroups (including type $A_0$).
Code
def statistic(cartanType):
    from sage.graphs.independent_sets import IndependentSets
    W = WeylGroup(cartanType)
    P = [item.reflection_to_root().to_ambient() for item in W.simple_reflections()]
    n = len(P)
    
    # realize generating sets of parabolic subgroups and angles between them as graph
    V = list(range(n))
    E = []
    for i in range(n):
        for j in range(i):
            if P[i].inner_product(P[j]) <= 0:
                x = (P[i].inner_product(P[j]))^2
                y = P[i].inner_product(P[i]) * P[j].inner_product(P[j])
                E.append([i, j, x/y])
    G = Graph([V, E], weighted=True)
    C = IndependentSets(G, maximal=False, complement=True)
    
    # count different Cartan types
    Types = []
    for c in C:
        g = G.subgraph(c).canonical_label(edge_labels=True)
        if g not in Types:
            Types.append(g)
    return len(Types)
Created
May 03, 2022 at 14:54 by Dennis Jahn
Updated
Feb 21, 2024 at 16:29 by Martin Rubey