Identifier
- St001800: Dyck paths ⟶ ℤ
Values
=>
Cc0005;cc-rep
[]=>1
[1,0]=>1
[1,0,1,0]=>2
[1,1,0,0]=>1
[1,0,1,0,1,0]=>4
[1,0,1,1,0,0]=>3
[1,1,0,0,1,0]=>3
[1,1,0,1,0,0]=>1
[1,1,1,0,0,0]=>1
[1,0,1,0,1,0,1,0]=>8
[1,0,1,0,1,1,0,0]=>6
[1,0,1,1,0,0,1,0]=>9
[1,0,1,1,0,1,0,0]=>3
[1,0,1,1,1,0,0,0]=>4
[1,1,0,0,1,0,1,0]=>6
[1,1,0,0,1,1,0,0]=>6
[1,1,0,1,0,0,1,0]=>3
[1,1,0,1,0,1,0,0]=>2
[1,1,0,1,1,0,0,0]=>1
[1,1,1,0,0,0,1,0]=>4
[1,1,1,0,0,1,0,0]=>1
[1,1,1,0,1,0,0,0]=>1
[1,1,1,1,0,0,0,0]=>1
[1,0,1,0,1,0,1,0,1,0]=>16
[1,0,1,0,1,0,1,1,0,0]=>12
[1,0,1,0,1,1,0,0,1,0]=>18
[1,0,1,0,1,1,0,1,0,0]=>6
[1,0,1,0,1,1,1,0,0,0]=>8
[1,0,1,1,0,0,1,0,1,0]=>18
[1,0,1,1,0,0,1,1,0,0]=>18
[1,0,1,1,0,1,0,0,1,0]=>9
[1,0,1,1,0,1,0,1,0,0]=>6
[1,0,1,1,0,1,1,0,0,0]=>3
[1,0,1,1,1,0,0,0,1,0]=>16
[1,0,1,1,1,0,0,1,0,0]=>4
[1,0,1,1,1,0,1,0,0,0]=>4
[1,0,1,1,1,1,0,0,0,0]=>5
[1,1,0,0,1,0,1,0,1,0]=>12
[1,1,0,0,1,0,1,1,0,0]=>9
[1,1,0,0,1,1,0,0,1,0]=>18
[1,1,0,0,1,1,0,1,0,0]=>6
[1,1,0,0,1,1,1,0,0,0]=>10
[1,1,0,1,0,0,1,0,1,0]=>6
[1,1,0,1,0,0,1,1,0,0]=>6
[1,1,0,1,0,1,0,0,1,0]=>6
[1,1,0,1,0,1,0,1,0,0]=>4
[1,1,0,1,0,1,1,0,0,0]=>3
[1,1,0,1,1,0,0,0,1,0]=>4
[1,1,0,1,1,0,0,1,0,0]=>1
[1,1,0,1,1,0,1,0,0,0]=>2
[1,1,0,1,1,1,0,0,0,0]=>1
[1,1,1,0,0,0,1,0,1,0]=>8
[1,1,1,0,0,0,1,1,0,0]=>10
[1,1,1,0,0,1,0,0,1,0]=>3
[1,1,1,0,0,1,0,1,0,0]=>3
[1,1,1,0,0,1,1,0,0,0]=>1
[1,1,1,0,1,0,0,0,1,0]=>4
[1,1,1,0,1,0,0,1,0,0]=>2
[1,1,1,0,1,0,1,0,0,0]=>1
[1,1,1,0,1,1,0,0,0,0]=>1
[1,1,1,1,0,0,0,0,1,0]=>5
[1,1,1,1,0,0,0,1,0,0]=>1
[1,1,1,1,0,0,1,0,0,0]=>1
[1,1,1,1,0,1,0,0,0,0]=>1
[1,1,1,1,1,0,0,0,0,0]=>1
[1,0,1,0,1,0,1,0,1,0,1,0]=>32
[1,0,1,0,1,0,1,0,1,1,0,0]=>24
[1,0,1,0,1,0,1,1,0,0,1,0]=>36
[1,0,1,0,1,0,1,1,0,1,0,0]=>12
[1,0,1,0,1,0,1,1,1,0,0,0]=>16
[1,0,1,0,1,1,0,0,1,0,1,0]=>36
[1,0,1,0,1,1,0,0,1,1,0,0]=>36
[1,0,1,0,1,1,0,1,0,0,1,0]=>18
[1,0,1,0,1,1,0,1,0,1,0,0]=>12
[1,0,1,0,1,1,0,1,1,0,0,0]=>6
[1,0,1,0,1,1,1,0,0,0,1,0]=>32
[1,0,1,0,1,1,1,0,0,1,0,0]=>8
[1,0,1,0,1,1,1,0,1,0,0,0]=>8
[1,0,1,0,1,1,1,1,0,0,0,0]=>10
[1,0,1,1,0,0,1,0,1,0,1,0]=>36
[1,0,1,1,0,0,1,0,1,1,0,0]=>27
[1,0,1,1,0,0,1,1,0,0,1,0]=>54
[1,0,1,1,0,0,1,1,0,1,0,0]=>18
[1,0,1,1,0,0,1,1,1,0,0,0]=>30
[1,0,1,1,0,1,0,0,1,0,1,0]=>18
[1,0,1,1,0,1,0,0,1,1,0,0]=>18
[1,0,1,1,0,1,0,1,0,0,1,0]=>18
[1,0,1,1,0,1,0,1,0,1,0,0]=>12
[1,0,1,1,0,1,0,1,1,0,0,0]=>9
[1,0,1,1,0,1,1,0,0,0,1,0]=>12
[1,0,1,1,0,1,1,0,0,1,0,0]=>3
[1,0,1,1,0,1,1,0,1,0,0,0]=>6
[1,0,1,1,0,1,1,1,0,0,0,0]=>3
[1,0,1,1,1,0,0,0,1,0,1,0]=>32
[1,0,1,1,1,0,0,0,1,1,0,0]=>40
[1,0,1,1,1,0,0,1,0,0,1,0]=>12
[1,0,1,1,1,0,0,1,0,1,0,0]=>12
[1,0,1,1,1,0,0,1,1,0,0,0]=>4
[1,0,1,1,1,0,1,0,0,0,1,0]=>16
[1,0,1,1,1,0,1,0,0,1,0,0]=>8
[1,0,1,1,1,0,1,0,1,0,0,0]=>4
[1,0,1,1,1,0,1,1,0,0,0,0]=>4
[1,0,1,1,1,1,0,0,0,0,1,0]=>25
[1,0,1,1,1,1,0,0,0,1,0,0]=>5
[1,0,1,1,1,1,0,0,1,0,0,0]=>5
[1,0,1,1,1,1,0,1,0,0,0,0]=>5
[1,0,1,1,1,1,1,0,0,0,0,0]=>6
[1,1,0,0,1,0,1,0,1,0,1,0]=>24
[1,1,0,0,1,0,1,0,1,1,0,0]=>18
[1,1,0,0,1,0,1,1,0,0,1,0]=>27
[1,1,0,0,1,0,1,1,0,1,0,0]=>9
[1,1,0,0,1,0,1,1,1,0,0,0]=>12
[1,1,0,0,1,1,0,0,1,0,1,0]=>36
[1,1,0,0,1,1,0,0,1,1,0,0]=>36
[1,1,0,0,1,1,0,1,0,0,1,0]=>18
[1,1,0,0,1,1,0,1,0,1,0,0]=>12
[1,1,0,0,1,1,0,1,1,0,0,0]=>6
[1,1,0,0,1,1,1,0,0,0,1,0]=>40
[1,1,0,0,1,1,1,0,0,1,0,0]=>10
[1,1,0,0,1,1,1,0,1,0,0,0]=>10
[1,1,0,0,1,1,1,1,0,0,0,0]=>15
[1,1,0,1,0,0,1,0,1,0,1,0]=>12
[1,1,0,1,0,0,1,0,1,1,0,0]=>9
[1,1,0,1,0,0,1,1,0,0,1,0]=>18
[1,1,0,1,0,0,1,1,0,1,0,0]=>6
[1,1,0,1,0,0,1,1,1,0,0,0]=>10
[1,1,0,1,0,1,0,0,1,0,1,0]=>12
[1,1,0,1,0,1,0,0,1,1,0,0]=>12
[1,1,0,1,0,1,0,1,0,0,1,0]=>12
[1,1,0,1,0,1,0,1,0,1,0,0]=>8
[1,1,0,1,0,1,0,1,1,0,0,0]=>6
[1,1,0,1,0,1,1,0,0,0,1,0]=>12
[1,1,0,1,0,1,1,0,0,1,0,0]=>3
[1,1,0,1,0,1,1,0,1,0,0,0]=>6
[1,1,0,1,0,1,1,1,0,0,0,0]=>4
[1,1,0,1,1,0,0,0,1,0,1,0]=>8
[1,1,0,1,1,0,0,0,1,1,0,0]=>10
[1,1,0,1,1,0,0,1,0,0,1,0]=>3
[1,1,0,1,1,0,0,1,0,1,0,0]=>3
[1,1,0,1,1,0,0,1,1,0,0,0]=>1
[1,1,0,1,1,0,1,0,0,0,1,0]=>8
[1,1,0,1,1,0,1,0,0,1,0,0]=>4
[1,1,0,1,1,0,1,0,1,0,0,0]=>2
[1,1,0,1,1,0,1,1,0,0,0,0]=>3
[1,1,0,1,1,1,0,0,0,0,1,0]=>5
[1,1,0,1,1,1,0,0,0,1,0,0]=>1
[1,1,0,1,1,1,0,0,1,0,0,0]=>1
[1,1,0,1,1,1,0,1,0,0,0,0]=>2
[1,1,0,1,1,1,1,0,0,0,0,0]=>1
[1,1,1,0,0,0,1,0,1,0,1,0]=>16
[1,1,1,0,0,0,1,0,1,1,0,0]=>12
[1,1,1,0,0,0,1,1,0,0,1,0]=>30
[1,1,1,0,0,0,1,1,0,1,0,0]=>10
[1,1,1,0,0,0,1,1,1,0,0,0]=>20
[1,1,1,0,0,1,0,0,1,0,1,0]=>6
[1,1,1,0,0,1,0,0,1,1,0,0]=>6
[1,1,1,0,0,1,0,1,0,0,1,0]=>9
[1,1,1,0,0,1,0,1,0,1,0,0]=>6
[1,1,1,0,0,1,0,1,1,0,0,0]=>6
[1,1,1,0,0,1,1,0,0,0,1,0]=>4
[1,1,1,0,0,1,1,0,0,1,0,0]=>1
[1,1,1,0,0,1,1,0,1,0,0,0]=>3
[1,1,1,0,0,1,1,1,0,0,0,0]=>1
[1,1,1,0,1,0,0,0,1,0,1,0]=>8
[1,1,1,0,1,0,0,0,1,1,0,0]=>10
[1,1,1,0,1,0,0,1,0,0,1,0]=>6
[1,1,1,0,1,0,0,1,0,1,0,0]=>6
[1,1,1,0,1,0,0,1,1,0,0,0]=>3
[1,1,1,0,1,0,1,0,0,0,1,0]=>4
[1,1,1,0,1,0,1,0,0,1,0,0]=>2
[1,1,1,0,1,0,1,0,1,0,0,0]=>2
[1,1,1,0,1,0,1,1,0,0,0,0]=>1
[1,1,1,0,1,1,0,0,0,0,1,0]=>5
[1,1,1,0,1,1,0,0,0,1,0,0]=>1
[1,1,1,0,1,1,0,0,1,0,0,0]=>2
[1,1,1,0,1,1,0,1,0,0,0,0]=>1
[1,1,1,0,1,1,1,0,0,0,0,0]=>1
[1,1,1,1,0,0,0,0,1,0,1,0]=>10
[1,1,1,1,0,0,0,0,1,1,0,0]=>15
[1,1,1,1,0,0,0,1,0,0,1,0]=>3
[1,1,1,1,0,0,0,1,0,1,0,0]=>4
[1,1,1,1,0,0,0,1,1,0,0,0]=>1
[1,1,1,1,0,0,1,0,0,0,1,0]=>4
[1,1,1,1,0,0,1,0,0,1,0,0]=>3
[1,1,1,1,0,0,1,0,1,0,0,0]=>1
[1,1,1,1,0,0,1,1,0,0,0,0]=>1
[1,1,1,1,0,1,0,0,0,0,1,0]=>5
[1,1,1,1,0,1,0,0,0,1,0,0]=>2
[1,1,1,1,0,1,0,0,1,0,0,0]=>1
[1,1,1,1,0,1,0,1,0,0,0,0]=>1
[1,1,1,1,0,1,1,0,0,0,0,0]=>1
[1,1,1,1,1,0,0,0,0,0,1,0]=>6
[1,1,1,1,1,0,0,0,0,1,0,0]=>1
[1,1,1,1,1,0,0,0,1,0,0,0]=>1
[1,1,1,1,1,0,0,1,0,0,0,0]=>1
[1,1,1,1,1,0,1,0,0,0,0,0]=>1
[1,1,1,1,1,1,0,0,0,0,0,0]=>1
[1,0,1,0,1,0,1,0,1,0,1,0,1,0]=>64
[1,0,1,0,1,0,1,0,1,0,1,1,0,0]=>48
[1,0,1,0,1,0,1,0,1,1,0,0,1,0]=>72
[1,0,1,0,1,0,1,0,1,1,0,1,0,0]=>24
[1,0,1,0,1,0,1,0,1,1,1,0,0,0]=>32
[1,0,1,0,1,0,1,1,0,0,1,0,1,0]=>72
[1,0,1,0,1,0,1,1,0,0,1,1,0,0]=>72
[1,0,1,0,1,0,1,1,0,1,0,0,1,0]=>36
[1,0,1,0,1,0,1,1,0,1,0,1,0,0]=>24
[1,0,1,0,1,0,1,1,0,1,1,0,0,0]=>12
[1,0,1,0,1,0,1,1,1,0,0,0,1,0]=>64
[1,0,1,0,1,0,1,1,1,0,0,1,0,0]=>16
[1,0,1,0,1,0,1,1,1,0,1,0,0,0]=>16
[1,0,1,0,1,0,1,1,1,1,0,0,0,0]=>20
[1,0,1,0,1,1,0,0,1,0,1,0,1,0]=>72
[1,0,1,0,1,1,0,0,1,0,1,1,0,0]=>54
[1,0,1,0,1,1,0,0,1,1,0,0,1,0]=>108
[1,0,1,0,1,1,0,0,1,1,0,1,0,0]=>36
[1,0,1,0,1,1,0,0,1,1,1,0,0,0]=>60
[1,0,1,0,1,1,0,1,0,0,1,0,1,0]=>36
[1,0,1,0,1,1,0,1,0,0,1,1,0,0]=>36
[1,0,1,0,1,1,0,1,0,1,0,0,1,0]=>36
[1,0,1,0,1,1,0,1,0,1,0,1,0,0]=>24
[1,0,1,0,1,1,0,1,0,1,1,0,0,0]=>18
[1,0,1,0,1,1,0,1,1,0,0,0,1,0]=>24
[1,0,1,0,1,1,0,1,1,0,0,1,0,0]=>6
[1,0,1,0,1,1,0,1,1,0,1,0,0,0]=>12
[1,0,1,0,1,1,0,1,1,1,0,0,0,0]=>6
[1,0,1,0,1,1,1,0,0,0,1,0,1,0]=>64
[1,0,1,0,1,1,1,0,0,0,1,1,0,0]=>80
[1,0,1,0,1,1,1,0,0,1,0,0,1,0]=>24
[1,0,1,0,1,1,1,0,0,1,0,1,0,0]=>24
[1,0,1,0,1,1,1,0,0,1,1,0,0,0]=>8
[1,0,1,0,1,1,1,0,1,0,0,0,1,0]=>32
[1,0,1,0,1,1,1,0,1,0,0,1,0,0]=>16
[1,0,1,0,1,1,1,0,1,0,1,0,0,0]=>8
[1,0,1,0,1,1,1,0,1,1,0,0,0,0]=>8
[1,0,1,0,1,1,1,1,0,0,0,0,1,0]=>50
[1,0,1,0,1,1,1,1,0,0,0,1,0,0]=>10
[1,0,1,0,1,1,1,1,0,0,1,0,0,0]=>10
[1,0,1,0,1,1,1,1,0,1,0,0,0,0]=>10
[1,0,1,0,1,1,1,1,1,0,0,0,0,0]=>12
[1,0,1,1,0,0,1,0,1,0,1,0,1,0]=>72
[1,0,1,1,0,0,1,0,1,0,1,1,0,0]=>54
[1,0,1,1,0,0,1,0,1,1,0,0,1,0]=>81
[1,0,1,1,0,0,1,0,1,1,0,1,0,0]=>27
[1,0,1,1,0,0,1,0,1,1,1,0,0,0]=>36
[1,0,1,1,0,0,1,1,0,0,1,0,1,0]=>108
[1,0,1,1,0,0,1,1,0,0,1,1,0,0]=>108
[1,0,1,1,0,0,1,1,0,1,0,0,1,0]=>54
[1,0,1,1,0,0,1,1,0,1,0,1,0,0]=>36
[1,0,1,1,0,0,1,1,0,1,1,0,0,0]=>18
[1,0,1,1,0,0,1,1,1,0,0,0,1,0]=>120
[1,0,1,1,0,0,1,1,1,0,0,1,0,0]=>30
[1,0,1,1,0,0,1,1,1,0,1,0,0,0]=>30
[1,0,1,1,0,0,1,1,1,1,0,0,0,0]=>45
[1,0,1,1,0,1,0,0,1,0,1,0,1,0]=>36
[1,0,1,1,0,1,0,0,1,0,1,1,0,0]=>27
[1,0,1,1,0,1,0,0,1,1,0,0,1,0]=>54
[1,0,1,1,0,1,0,0,1,1,0,1,0,0]=>18
[1,0,1,1,0,1,0,0,1,1,1,0,0,0]=>30
[1,0,1,1,0,1,0,1,0,0,1,0,1,0]=>36
[1,0,1,1,0,1,0,1,0,0,1,1,0,0]=>36
[1,0,1,1,0,1,0,1,0,1,0,0,1,0]=>36
[1,0,1,1,0,1,0,1,0,1,0,1,0,0]=>24
[1,0,1,1,0,1,0,1,0,1,1,0,0,0]=>18
[1,0,1,1,0,1,0,1,1,0,0,0,1,0]=>36
[1,0,1,1,0,1,0,1,1,0,0,1,0,0]=>9
[1,0,1,1,0,1,0,1,1,0,1,0,0,0]=>18
[1,0,1,1,0,1,0,1,1,1,0,0,0,0]=>12
[1,0,1,1,0,1,1,0,0,0,1,0,1,0]=>24
[1,0,1,1,0,1,1,0,0,0,1,1,0,0]=>30
[1,0,1,1,0,1,1,0,0,1,0,0,1,0]=>9
[1,0,1,1,0,1,1,0,0,1,0,1,0,0]=>9
[1,0,1,1,0,1,1,0,0,1,1,0,0,0]=>3
[1,0,1,1,0,1,1,0,1,0,0,0,1,0]=>24
[1,0,1,1,0,1,1,0,1,0,0,1,0,0]=>12
[1,0,1,1,0,1,1,0,1,0,1,0,0,0]=>6
[1,0,1,1,0,1,1,0,1,1,0,0,0,0]=>9
[1,0,1,1,0,1,1,1,0,0,0,0,1,0]=>15
[1,0,1,1,0,1,1,1,0,0,0,1,0,0]=>3
[1,0,1,1,0,1,1,1,0,0,1,0,0,0]=>3
[1,0,1,1,0,1,1,1,0,1,0,0,0,0]=>6
[1,0,1,1,0,1,1,1,1,0,0,0,0,0]=>3
[1,0,1,1,1,0,0,0,1,0,1,0,1,0]=>64
[1,0,1,1,1,0,0,0,1,0,1,1,0,0]=>48
[1,0,1,1,1,0,0,0,1,1,0,0,1,0]=>120
[1,0,1,1,1,0,0,0,1,1,0,1,0,0]=>40
[1,0,1,1,1,0,0,0,1,1,1,0,0,0]=>80
[1,0,1,1,1,0,0,1,0,0,1,0,1,0]=>24
[1,0,1,1,1,0,0,1,0,0,1,1,0,0]=>24
[1,0,1,1,1,0,0,1,0,1,0,0,1,0]=>36
[1,0,1,1,1,0,0,1,0,1,0,1,0,0]=>24
[1,0,1,1,1,0,0,1,0,1,1,0,0,0]=>24
[1,0,1,1,1,0,0,1,1,0,0,0,1,0]=>16
[1,0,1,1,1,0,0,1,1,0,0,1,0,0]=>4
[1,0,1,1,1,0,0,1,1,0,1,0,0,0]=>12
[1,0,1,1,1,0,0,1,1,1,0,0,0,0]=>4
[1,0,1,1,1,0,1,0,0,0,1,0,1,0]=>32
[1,0,1,1,1,0,1,0,0,0,1,1,0,0]=>40
[1,0,1,1,1,0,1,0,0,1,0,0,1,0]=>24
[1,0,1,1,1,0,1,0,0,1,0,1,0,0]=>24
[1,0,1,1,1,0,1,0,0,1,1,0,0,0]=>12
[1,0,1,1,1,0,1,0,1,0,0,0,1,0]=>16
[1,0,1,1,1,0,1,0,1,0,0,1,0,0]=>8
[1,0,1,1,1,0,1,0,1,0,1,0,0,0]=>8
[1,0,1,1,1,0,1,0,1,1,0,0,0,0]=>4
[1,0,1,1,1,0,1,1,0,0,0,0,1,0]=>20
[1,0,1,1,1,0,1,1,0,0,0,1,0,0]=>4
[1,0,1,1,1,0,1,1,0,0,1,0,0,0]=>8
[1,0,1,1,1,0,1,1,0,1,0,0,0,0]=>4
[1,0,1,1,1,0,1,1,1,0,0,0,0,0]=>4
[1,0,1,1,1,1,0,0,0,0,1,0,1,0]=>50
[1,0,1,1,1,1,0,0,0,0,1,1,0,0]=>75
[1,0,1,1,1,1,0,0,0,1,0,0,1,0]=>15
[1,0,1,1,1,1,0,0,0,1,0,1,0,0]=>20
[1,0,1,1,1,1,0,0,0,1,1,0,0,0]=>5
[1,0,1,1,1,1,0,0,1,0,0,0,1,0]=>20
[1,0,1,1,1,1,0,0,1,0,0,1,0,0]=>15
[1,0,1,1,1,1,0,0,1,0,1,0,0,0]=>5
[1,0,1,1,1,1,0,0,1,1,0,0,0,0]=>5
[1,0,1,1,1,1,0,1,0,0,0,0,1,0]=>25
[1,0,1,1,1,1,0,1,0,0,0,1,0,0]=>10
[1,0,1,1,1,1,0,1,0,0,1,0,0,0]=>5
[1,0,1,1,1,1,0,1,0,1,0,0,0,0]=>5
[1,0,1,1,1,1,0,1,1,0,0,0,0,0]=>5
[1,0,1,1,1,1,1,0,0,0,0,0,1,0]=>36
[1,0,1,1,1,1,1,0,0,0,0,1,0,0]=>6
[1,0,1,1,1,1,1,0,0,0,1,0,0,0]=>6
[1,0,1,1,1,1,1,0,0,1,0,0,0,0]=>6
[1,0,1,1,1,1,1,0,1,0,0,0,0,0]=>6
[1,0,1,1,1,1,1,1,0,0,0,0,0,0]=>7
[1,1,0,0,1,0,1,0,1,0,1,0,1,0]=>48
[1,1,0,0,1,0,1,0,1,0,1,1,0,0]=>36
[1,1,0,0,1,0,1,0,1,1,0,0,1,0]=>54
[1,1,0,0,1,0,1,0,1,1,0,1,0,0]=>18
[1,1,0,0,1,0,1,0,1,1,1,0,0,0]=>24
[1,1,0,0,1,0,1,1,0,0,1,0,1,0]=>54
[1,1,0,0,1,0,1,1,0,0,1,1,0,0]=>54
[1,1,0,0,1,0,1,1,0,1,0,0,1,0]=>27
[1,1,0,0,1,0,1,1,0,1,0,1,0,0]=>18
[1,1,0,0,1,0,1,1,0,1,1,0,0,0]=>9
[1,1,0,0,1,0,1,1,1,0,0,0,1,0]=>48
[1,1,0,0,1,0,1,1,1,0,0,1,0,0]=>12
[1,1,0,0,1,0,1,1,1,0,1,0,0,0]=>12
[1,1,0,0,1,0,1,1,1,1,0,0,0,0]=>15
[1,1,0,0,1,1,0,0,1,0,1,0,1,0]=>72
[1,1,0,0,1,1,0,0,1,0,1,1,0,0]=>54
[1,1,0,0,1,1,0,0,1,1,0,0,1,0]=>108
[1,1,0,0,1,1,0,0,1,1,0,1,0,0]=>36
[1,1,0,0,1,1,0,0,1,1,1,0,0,0]=>60
[1,1,0,0,1,1,0,1,0,0,1,0,1,0]=>36
[1,1,0,0,1,1,0,1,0,0,1,1,0,0]=>36
[1,1,0,0,1,1,0,1,0,1,0,0,1,0]=>36
[1,1,0,0,1,1,0,1,0,1,0,1,0,0]=>24
[1,1,0,0,1,1,0,1,0,1,1,0,0,0]=>18
[1,1,0,0,1,1,0,1,1,0,0,0,1,0]=>24
[1,1,0,0,1,1,0,1,1,0,0,1,0,0]=>6
[1,1,0,0,1,1,0,1,1,0,1,0,0,0]=>12
[1,1,0,0,1,1,0,1,1,1,0,0,0,0]=>6
[1,1,0,0,1,1,1,0,0,0,1,0,1,0]=>80
[1,1,0,0,1,1,1,0,0,0,1,1,0,0]=>100
[1,1,0,0,1,1,1,0,0,1,0,0,1,0]=>30
[1,1,0,0,1,1,1,0,0,1,0,1,0,0]=>30
[1,1,0,0,1,1,1,0,0,1,1,0,0,0]=>10
[1,1,0,0,1,1,1,0,1,0,0,0,1,0]=>40
[1,1,0,0,1,1,1,0,1,0,0,1,0,0]=>20
[1,1,0,0,1,1,1,0,1,0,1,0,0,0]=>10
[1,1,0,0,1,1,1,0,1,1,0,0,0,0]=>10
[1,1,0,0,1,1,1,1,0,0,0,0,1,0]=>75
[1,1,0,0,1,1,1,1,0,0,0,1,0,0]=>15
[1,1,0,0,1,1,1,1,0,0,1,0,0,0]=>15
[1,1,0,0,1,1,1,1,0,1,0,0,0,0]=>15
[1,1,0,0,1,1,1,1,1,0,0,0,0,0]=>21
[1,1,0,1,0,0,1,0,1,0,1,0,1,0]=>24
[1,1,0,1,0,0,1,0,1,0,1,1,0,0]=>18
[1,1,0,1,0,0,1,0,1,1,0,0,1,0]=>27
[1,1,0,1,0,0,1,0,1,1,0,1,0,0]=>9
[1,1,0,1,0,0,1,0,1,1,1,0,0,0]=>12
[1,1,0,1,0,0,1,1,0,0,1,0,1,0]=>36
[1,1,0,1,0,0,1,1,0,0,1,1,0,0]=>36
[1,1,0,1,0,0,1,1,0,1,0,0,1,0]=>18
[1,1,0,1,0,0,1,1,0,1,0,1,0,0]=>12
[1,1,0,1,0,0,1,1,0,1,1,0,0,0]=>6
[1,1,0,1,0,0,1,1,1,0,0,0,1,0]=>40
[1,1,0,1,0,0,1,1,1,0,0,1,0,0]=>10
[1,1,0,1,0,0,1,1,1,0,1,0,0,0]=>10
[1,1,0,1,0,0,1,1,1,1,0,0,0,0]=>15
[1,1,0,1,0,1,0,0,1,0,1,0,1,0]=>24
[1,1,0,1,0,1,0,0,1,0,1,1,0,0]=>18
[1,1,0,1,0,1,0,0,1,1,0,0,1,0]=>36
[1,1,0,1,0,1,0,0,1,1,0,1,0,0]=>12
[1,1,0,1,0,1,0,0,1,1,1,0,0,0]=>20
[1,1,0,1,0,1,0,1,0,0,1,0,1,0]=>24
[1,1,0,1,0,1,0,1,0,0,1,1,0,0]=>24
[1,1,0,1,0,1,0,1,0,1,0,0,1,0]=>24
[1,1,0,1,0,1,0,1,0,1,0,1,0,0]=>16
[1,1,0,1,0,1,0,1,0,1,1,0,0,0]=>12
[1,1,0,1,0,1,0,1,1,0,0,0,1,0]=>24
[1,1,0,1,0,1,0,1,1,0,0,1,0,0]=>6
[1,1,0,1,0,1,0,1,1,0,1,0,0,0]=>12
[1,1,0,1,0,1,0,1,1,1,0,0,0,0]=>8
[1,1,0,1,0,1,1,0,0,0,1,0,1,0]=>24
[1,1,0,1,0,1,1,0,0,0,1,1,0,0]=>30
[1,1,0,1,0,1,1,0,0,1,0,0,1,0]=>9
[1,1,0,1,0,1,1,0,0,1,0,1,0,0]=>9
[1,1,0,1,0,1,1,0,0,1,1,0,0,0]=>3
[1,1,0,1,0,1,1,0,1,0,0,0,1,0]=>24
[1,1,0,1,0,1,1,0,1,0,0,1,0,0]=>12
[1,1,0,1,0,1,1,0,1,0,1,0,0,0]=>6
[1,1,0,1,0,1,1,0,1,1,0,0,0,0]=>9
[1,1,0,1,0,1,1,1,0,0,0,0,1,0]=>20
[1,1,0,1,0,1,1,1,0,0,0,1,0,0]=>4
[1,1,0,1,0,1,1,1,0,0,1,0,0,0]=>4
[1,1,0,1,0,1,1,1,0,1,0,0,0,0]=>8
[1,1,0,1,0,1,1,1,1,0,0,0,0,0]=>5
[1,1,0,1,1,0,0,0,1,0,1,0,1,0]=>16
[1,1,0,1,1,0,0,0,1,0,1,1,0,0]=>12
[1,1,0,1,1,0,0,0,1,1,0,0,1,0]=>30
[1,1,0,1,1,0,0,0,1,1,0,1,0,0]=>10
[1,1,0,1,1,0,0,0,1,1,1,0,0,0]=>20
[1,1,0,1,1,0,0,1,0,0,1,0,1,0]=>6
[1,1,0,1,1,0,0,1,0,0,1,1,0,0]=>6
[1,1,0,1,1,0,0,1,0,1,0,0,1,0]=>9
[1,1,0,1,1,0,0,1,0,1,0,1,0,0]=>6
[1,1,0,1,1,0,0,1,0,1,1,0,0,0]=>6
[1,1,0,1,1,0,0,1,1,0,0,0,1,0]=>4
[1,1,0,1,1,0,0,1,1,0,0,1,0,0]=>1
[1,1,0,1,1,0,0,1,1,0,1,0,0,0]=>3
[1,1,0,1,1,0,0,1,1,1,0,0,0,0]=>1
[1,1,0,1,1,0,1,0,0,0,1,0,1,0]=>16
[1,1,0,1,1,0,1,0,0,0,1,1,0,0]=>20
[1,1,0,1,1,0,1,0,0,1,0,0,1,0]=>12
[1,1,0,1,1,0,1,0,0,1,0,1,0,0]=>12
[1,1,0,1,1,0,1,0,0,1,1,0,0,0]=>6
[1,1,0,1,1,0,1,0,1,0,0,0,1,0]=>8
[1,1,0,1,1,0,1,0,1,0,0,1,0,0]=>4
[1,1,0,1,1,0,1,0,1,0,1,0,0,0]=>4
[1,1,0,1,1,0,1,0,1,1,0,0,0,0]=>2
[1,1,0,1,1,0,1,1,0,0,0,0,1,0]=>15
[1,1,0,1,1,0,1,1,0,0,0,1,0,0]=>3
[1,1,0,1,1,0,1,1,0,0,1,0,0,0]=>6
[1,1,0,1,1,0,1,1,0,1,0,0,0,0]=>3
[1,1,0,1,1,0,1,1,1,0,0,0,0,0]=>4
[1,1,0,1,1,1,0,0,0,0,1,0,1,0]=>10
[1,1,0,1,1,1,0,0,0,0,1,1,0,0]=>15
[1,1,0,1,1,1,0,0,0,1,0,0,1,0]=>3
[1,1,0,1,1,1,0,0,0,1,0,1,0,0]=>4
[1,1,0,1,1,1,0,0,0,1,1,0,0,0]=>1
[1,1,0,1,1,1,0,0,1,0,0,0,1,0]=>4
[1,1,0,1,1,1,0,0,1,0,0,1,0,0]=>3
[1,1,0,1,1,1,0,0,1,0,1,0,0,0]=>1
[1,1,0,1,1,1,0,0,1,1,0,0,0,0]=>1
[1,1,0,1,1,1,0,1,0,0,0,0,1,0]=>10
[1,1,0,1,1,1,0,1,0,0,0,1,0,0]=>4
[1,1,0,1,1,1,0,1,0,0,1,0,0,0]=>2
[1,1,0,1,1,1,0,1,0,1,0,0,0,0]=>2
[1,1,0,1,1,1,0,1,1,0,0,0,0,0]=>3
[1,1,0,1,1,1,1,0,0,0,0,0,1,0]=>6
[1,1,0,1,1,1,1,0,0,0,0,1,0,0]=>1
[1,1,0,1,1,1,1,0,0,0,1,0,0,0]=>1
[1,1,0,1,1,1,1,0,0,1,0,0,0,0]=>1
[1,1,0,1,1,1,1,0,1,0,0,0,0,0]=>2
[1,1,0,1,1,1,1,1,0,0,0,0,0,0]=>1
[1,1,1,0,0,0,1,0,1,0,1,0,1,0]=>32
[1,1,1,0,0,0,1,0,1,0,1,1,0,0]=>24
[1,1,1,0,0,0,1,0,1,1,0,0,1,0]=>36
[1,1,1,0,0,0,1,0,1,1,0,1,0,0]=>12
[1,1,1,0,0,0,1,0,1,1,1,0,0,0]=>16
[1,1,1,0,0,0,1,1,0,0,1,0,1,0]=>60
[1,1,1,0,0,0,1,1,0,0,1,1,0,0]=>60
[1,1,1,0,0,0,1,1,0,1,0,0,1,0]=>30
[1,1,1,0,0,0,1,1,0,1,0,1,0,0]=>20
[1,1,1,0,0,0,1,1,0,1,1,0,0,0]=>10
[1,1,1,0,0,0,1,1,1,0,0,0,1,0]=>80
[1,1,1,0,0,0,1,1,1,0,0,1,0,0]=>20
[1,1,1,0,0,0,1,1,1,0,1,0,0,0]=>20
[1,1,1,0,0,0,1,1,1,1,0,0,0,0]=>35
[1,1,1,0,0,1,0,0,1,0,1,0,1,0]=>12
[1,1,1,0,0,1,0,0,1,0,1,1,0,0]=>9
[1,1,1,0,0,1,0,0,1,1,0,0,1,0]=>18
[1,1,1,0,0,1,0,0,1,1,0,1,0,0]=>6
[1,1,1,0,0,1,0,0,1,1,1,0,0,0]=>10
[1,1,1,0,0,1,0,1,0,0,1,0,1,0]=>18
[1,1,1,0,0,1,0,1,0,0,1,1,0,0]=>18
[1,1,1,0,0,1,0,1,0,1,0,0,1,0]=>18
[1,1,1,0,0,1,0,1,0,1,0,1,0,0]=>12
[1,1,1,0,0,1,0,1,0,1,1,0,0,0]=>9
[1,1,1,0,0,1,0,1,1,0,0,0,1,0]=>24
[1,1,1,0,0,1,0,1,1,0,0,1,0,0]=>6
[1,1,1,0,0,1,0,1,1,0,1,0,0,0]=>12
[1,1,1,0,0,1,0,1,1,1,0,0,0,0]=>10
[1,1,1,0,0,1,1,0,0,0,1,0,1,0]=>8
[1,1,1,0,0,1,1,0,0,0,1,1,0,0]=>10
[1,1,1,0,0,1,1,0,0,1,0,0,1,0]=>3
[1,1,1,0,0,1,1,0,0,1,0,1,0,0]=>3
[1,1,1,0,0,1,1,0,0,1,1,0,0,0]=>1
[1,1,1,0,0,1,1,0,1,0,0,0,1,0]=>12
[1,1,1,0,0,1,1,0,1,0,0,1,0,0]=>6
[1,1,1,0,0,1,1,0,1,0,1,0,0,0]=>3
[1,1,1,0,0,1,1,0,1,1,0,0,0,0]=>6
[1,1,1,0,0,1,1,1,0,0,0,0,1,0]=>5
[1,1,1,0,0,1,1,1,0,0,0,1,0,0]=>1
[1,1,1,0,0,1,1,1,0,0,1,0,0,0]=>1
[1,1,1,0,0,1,1,1,0,1,0,0,0,0]=>3
[1,1,1,0,0,1,1,1,1,0,0,0,0,0]=>1
[1,1,1,0,1,0,0,0,1,0,1,0,1,0]=>16
[1,1,1,0,1,0,0,0,1,0,1,1,0,0]=>12
[1,1,1,0,1,0,0,0,1,1,0,0,1,0]=>30
[1,1,1,0,1,0,0,0,1,1,0,1,0,0]=>10
[1,1,1,0,1,0,0,0,1,1,1,0,0,0]=>20
[1,1,1,0,1,0,0,1,0,0,1,0,1,0]=>12
[1,1,1,0,1,0,0,1,0,0,1,1,0,0]=>12
[1,1,1,0,1,0,0,1,0,1,0,0,1,0]=>18
[1,1,1,0,1,0,0,1,0,1,0,1,0,0]=>12
[1,1,1,0,1,0,0,1,0,1,1,0,0,0]=>12
[1,1,1,0,1,0,0,1,1,0,0,0,1,0]=>12
[1,1,1,0,1,0,0,1,1,0,0,1,0,0]=>3
[1,1,1,0,1,0,0,1,1,0,1,0,0,0]=>9
[1,1,1,0,1,0,0,1,1,1,0,0,0,0]=>4
[1,1,1,0,1,0,1,0,0,0,1,0,1,0]=>8
[1,1,1,0,1,0,1,0,0,0,1,1,0,0]=>10
[1,1,1,0,1,0,1,0,0,1,0,0,1,0]=>6
[1,1,1,0,1,0,1,0,0,1,0,1,0,0]=>6
[1,1,1,0,1,0,1,0,0,1,1,0,0,0]=>3
[1,1,1,0,1,0,1,0,1,0,0,0,1,0]=>8
[1,1,1,0,1,0,1,0,1,0,0,1,0,0]=>4
[1,1,1,0,1,0,1,0,1,0,1,0,0,0]=>4
[1,1,1,0,1,0,1,0,1,1,0,0,0,0]=>3
[1,1,1,0,1,0,1,1,0,0,0,0,1,0]=>5
[1,1,1,0,1,0,1,1,0,0,0,1,0,0]=>1
[1,1,1,0,1,0,1,1,0,0,1,0,0,0]=>2
[1,1,1,0,1,0,1,1,0,1,0,0,0,0]=>2
[1,1,1,0,1,0,1,1,1,0,0,0,0,0]=>1
[1,1,1,0,1,1,0,0,0,0,1,0,1,0]=>10
[1,1,1,0,1,1,0,0,0,0,1,1,0,0]=>15
[1,1,1,0,1,1,0,0,0,1,0,0,1,0]=>3
[1,1,1,0,1,1,0,0,0,1,0,1,0,0]=>4
[1,1,1,0,1,1,0,0,0,1,1,0,0,0]=>1
[1,1,1,0,1,1,0,0,1,0,0,0,1,0]=>8
[1,1,1,0,1,1,0,0,1,0,0,1,0,0]=>6
[1,1,1,0,1,1,0,0,1,0,1,0,0,0]=>2
[1,1,1,0,1,1,0,0,1,1,0,0,0,0]=>3
[1,1,1,0,1,1,0,1,0,0,0,0,1,0]=>5
[1,1,1,0,1,1,0,1,0,0,0,1,0,0]=>2
[1,1,1,0,1,1,0,1,0,0,1,0,0,0]=>1
[1,1,1,0,1,1,0,1,0,1,0,0,0,0]=>2
[1,1,1,0,1,1,0,1,1,0,0,0,0,0]=>1
[1,1,1,0,1,1,1,0,0,0,0,0,1,0]=>6
[1,1,1,0,1,1,1,0,0,0,0,1,0,0]=>1
[1,1,1,0,1,1,1,0,0,0,1,0,0,0]=>1
[1,1,1,0,1,1,1,0,0,1,0,0,0,0]=>2
[1,1,1,0,1,1,1,0,1,0,0,0,0,0]=>1
[1,1,1,0,1,1,1,1,0,0,0,0,0,0]=>1
[1,1,1,1,0,0,0,0,1,0,1,0,1,0]=>20
[1,1,1,1,0,0,0,0,1,0,1,1,0,0]=>15
[1,1,1,1,0,0,0,0,1,1,0,0,1,0]=>45
[1,1,1,1,0,0,0,0,1,1,0,1,0,0]=>15
[1,1,1,1,0,0,0,0,1,1,1,0,0,0]=>35
[1,1,1,1,0,0,0,1,0,0,1,0,1,0]=>6
[1,1,1,1,0,0,0,1,0,0,1,1,0,0]=>6
[1,1,1,1,0,0,0,1,0,1,0,0,1,0]=>12
[1,1,1,1,0,0,0,1,0,1,0,1,0,0]=>8
[1,1,1,1,0,0,0,1,0,1,1,0,0,0]=>10
[1,1,1,1,0,0,0,1,1,0,0,0,1,0]=>4
[1,1,1,1,0,0,0,1,1,0,0,1,0,0]=>1
[1,1,1,1,0,0,0,1,1,0,1,0,0,0]=>4
[1,1,1,1,0,0,0,1,1,1,0,0,0,0]=>1
[1,1,1,1,0,0,1,0,0,0,1,0,1,0]=>8
[1,1,1,1,0,0,1,0,0,0,1,1,0,0]=>10
[1,1,1,1,0,0,1,0,0,1,0,0,1,0]=>9
[1,1,1,1,0,0,1,0,0,1,0,1,0,0]=>9
[1,1,1,1,0,0,1,0,0,1,1,0,0,0]=>6
[1,1,1,1,0,0,1,0,1,0,0,0,1,0]=>4
[1,1,1,1,0,0,1,0,1,0,0,1,0,0]=>2
[1,1,1,1,0,0,1,0,1,0,1,0,0,0]=>3
[1,1,1,1,0,0,1,0,1,1,0,0,0,0]=>1
[1,1,1,1,0,0,1,1,0,0,0,0,1,0]=>5
[1,1,1,1,0,0,1,1,0,0,0,1,0,0]=>1
[1,1,1,1,0,0,1,1,0,0,1,0,0,0]=>3
[1,1,1,1,0,0,1,1,0,1,0,0,0,0]=>1
[1,1,1,1,0,0,1,1,1,0,0,0,0,0]=>1
[1,1,1,1,0,1,0,0,0,0,1,0,1,0]=>10
[1,1,1,1,0,1,0,0,0,0,1,1,0,0]=>15
[1,1,1,1,0,1,0,0,0,1,0,0,1,0]=>6
[1,1,1,1,0,1,0,0,0,1,0,1,0,0]=>8
[1,1,1,1,0,1,0,0,0,1,1,0,0,0]=>3
[1,1,1,1,0,1,0,0,1,0,0,0,1,0]=>4
[1,1,1,1,0,1,0,0,1,0,0,1,0,0]=>3
[1,1,1,1,0,1,0,0,1,0,1,0,0,0]=>2
[1,1,1,1,0,1,0,0,1,1,0,0,0,0]=>1
[1,1,1,1,0,1,0,1,0,0,0,0,1,0]=>5
[1,1,1,1,0,1,0,1,0,0,0,1,0,0]=>2
[1,1,1,1,0,1,0,1,0,0,1,0,0,0]=>2
[1,1,1,1,0,1,0,1,0,1,0,0,0,0]=>1
[1,1,1,1,0,1,0,1,1,0,0,0,0,0]=>1
[1,1,1,1,0,1,1,0,0,0,0,0,1,0]=>6
[1,1,1,1,0,1,1,0,0,0,0,1,0,0]=>1
[1,1,1,1,0,1,1,0,0,0,1,0,0,0]=>2
[1,1,1,1,0,1,1,0,0,1,0,0,0,0]=>1
[1,1,1,1,0,1,1,0,1,0,0,0,0,0]=>1
[1,1,1,1,0,1,1,1,0,0,0,0,0,0]=>1
[1,1,1,1,1,0,0,0,0,0,1,0,1,0]=>12
[1,1,1,1,1,0,0,0,0,0,1,1,0,0]=>21
[1,1,1,1,1,0,0,0,0,1,0,0,1,0]=>3
[1,1,1,1,1,0,0,0,0,1,0,1,0,0]=>5
[1,1,1,1,1,0,0,0,0,1,1,0,0,0]=>1
[1,1,1,1,1,0,0,0,1,0,0,0,1,0]=>4
[1,1,1,1,1,0,0,0,1,0,0,1,0,0]=>4
[1,1,1,1,1,0,0,0,1,0,1,0,0,0]=>1
[1,1,1,1,1,0,0,0,1,1,0,0,0,0]=>1
[1,1,1,1,1,0,0,1,0,0,0,0,1,0]=>5
[1,1,1,1,1,0,0,1,0,0,0,1,0,0]=>3
[1,1,1,1,1,0,0,1,0,0,1,0,0,0]=>1
[1,1,1,1,1,0,0,1,0,1,0,0,0,0]=>1
[1,1,1,1,1,0,0,1,1,0,0,0,0,0]=>1
[1,1,1,1,1,0,1,0,0,0,0,0,1,0]=>6
[1,1,1,1,1,0,1,0,0,0,0,1,0,0]=>2
[1,1,1,1,1,0,1,0,0,0,1,0,0,0]=>1
[1,1,1,1,1,0,1,0,0,1,0,0,0,0]=>1
[1,1,1,1,1,0,1,0,1,0,0,0,0,0]=>1
[1,1,1,1,1,0,1,1,0,0,0,0,0,0]=>1
[1,1,1,1,1,1,0,0,0,0,0,0,1,0]=>7
[1,1,1,1,1,1,0,0,0,0,0,1,0,0]=>1
[1,1,1,1,1,1,0,0,0,0,1,0,0,0]=>1
[1,1,1,1,1,1,0,0,0,1,0,0,0,0]=>1
[1,1,1,1,1,1,0,0,1,0,0,0,0,0]=>1
[1,1,1,1,1,1,0,1,0,0,0,0,0,0]=>1
[1,1,1,1,1,1,1,0,0,0,0,0,0,0]=>1
search for individual values
searching the database for the individual values of this statistic
/
search for generating function
searching the database for statistics with the same generating function
Description
The number of 3-Catalan paths having this Dyck path as first and last coordinate projections.
A 3-Catalan path is a lattice path from $(0,0,0)$ to $(n,n,n)$ consisting of steps $(1,0,0)$, $(0,1,0)$, and $(0,0,1)$ such that for each point $(x,y,z)$ on the path we have $x \geq y \geq z$.
Its first and last coordinate projections, denoted by $D_{xy}$ and $D_{yz}$, are the Dyck paths obtained by projecting the Catalan path onto the $x,y$-plane and the $y,z$-plane, respectively.
For a given Dyck path $D$ this is the number of Catalan paths $C$ such that $D_{xy}(C) = D_{yz}(C) = D$.
If $D$ is of semilength $n$, $r_i(D)$ denotes the number of downsteps between the $i$-th and $(i+1)$-st upstep, and $s_i(D)$ denotes the number of upsteps between the $i$-th and $(i+1)$-st downstep, then this number is given by $\prod\limits_{i=1}^{n-1} \binom{r_i(D) + s_i(D)}{r_i(D)}$.
A 3-Catalan path is a lattice path from $(0,0,0)$ to $(n,n,n)$ consisting of steps $(1,0,0)$, $(0,1,0)$, and $(0,0,1)$ such that for each point $(x,y,z)$ on the path we have $x \geq y \geq z$.
Its first and last coordinate projections, denoted by $D_{xy}$ and $D_{yz}$, are the Dyck paths obtained by projecting the Catalan path onto the $x,y$-plane and the $y,z$-plane, respectively.
For a given Dyck path $D$ this is the number of Catalan paths $C$ such that $D_{xy}(C) = D_{yz}(C) = D$.
If $D$ is of semilength $n$, $r_i(D)$ denotes the number of downsteps between the $i$-th and $(i+1)$-st upstep, and $s_i(D)$ denotes the number of upsteps between the $i$-th and $(i+1)$-st downstep, then this number is given by $\prod\limits_{i=1}^{n-1} \binom{r_i(D) + s_i(D)}{r_i(D)}$.
References
[1] Archer, K., Graves, C. Pattern-restricted permutations composed of 3-cycles MathSciNet:4400005 arXiv:2104.12664 DOI:10.1016/j.disc.2022.112895
[2] Archer, K., Gravies, C. A new statistic on Dyck paths for counting 3-dimensional Catalan words arXiv:2205.09686
[2] Archer, K., Gravies, C. A new statistic on Dyck paths for counting 3-dimensional Catalan words arXiv:2205.09686
Code
def statistic(D): # D is expected to be a list of 1s (upsteps) and 0s (downsteps) x = 1 n = len(D) / 2 uppies = [j for j, n in enumerate(D) if n == 1] downies = [j for j, n in enumerate(D) if n == 0] for i in range(1,n): r = D[ uppies[i-1] : uppies[i] ].count(0) s = D[ downies[i-1] : downies[i] ].count(1) x *= binomial(r + s, r) return x
Created
Jun 02, 2022 at 16:14 by Dennis Jahn
Updated
Jun 02, 2022 at 18:06 by Dennis Jahn
searching the database
Sorry, this statistic was not found in the database
or
add this statistic to the database – it's very simple and we need your support!