edit this statistic or download as text // json
Identifier
Values
=>
Cc0020;cc-rep
([],1)=>2 ([],2)=>3 ([(0,1)],2)=>4 ([],3)=>4 ([(1,2)],3)=>6 ([(0,2),(1,2)],3)=>7 ([(0,1),(0,2),(1,2)],3)=>8 ([],4)=>5 ([(2,3)],4)=>8 ([(1,3),(2,3)],4)=>10 ([(0,3),(1,3),(2,3)],4)=>11 ([(0,3),(1,2)],4)=>9 ([(0,3),(1,2),(2,3)],4)=>12 ([(1,2),(1,3),(2,3)],4)=>12 ([(0,3),(1,2),(1,3),(2,3)],4)=>16 ([(0,2),(0,3),(1,2),(1,3)],4)=>14 ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)=>18 ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)=>19 ([],5)=>6 ([(3,4)],5)=>10 ([(2,4),(3,4)],5)=>13 ([(1,4),(2,4),(3,4)],5)=>15 ([(0,4),(1,4),(2,4),(3,4)],5)=>16 ([(1,4),(2,3)],5)=>12 ([(1,4),(2,3),(3,4)],5)=>17 ([(0,1),(2,4),(3,4)],5)=>16 ([(2,3),(2,4),(3,4)],5)=>16 ([(0,4),(1,4),(2,3),(3,4)],5)=>21 ([(1,4),(2,3),(2,4),(3,4)],5)=>24 ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)=>28 ([(1,3),(1,4),(2,3),(2,4)],5)=>21 ([(0,4),(1,2),(1,3),(2,4),(3,4)],5)=>28 ([(1,3),(1,4),(2,3),(2,4),(3,4)],5)=>28 ([(0,4),(1,3),(2,3),(2,4),(3,4)],5)=>28 ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)=>36 ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5)=>30 ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)=>38 ([(0,4),(1,3),(2,3),(2,4)],5)=>19 ([(0,1),(2,3),(2,4),(3,4)],5)=>20 ([(0,3),(1,2),(1,4),(2,4),(3,4)],5)=>29 ([(0,3),(0,4),(1,2),(1,4),(2,4),(3,4)],5)=>32 ([(0,3),(0,4),(1,2),(1,4),(2,3)],5)=>22 ([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)=>36 ([(0,3),(0,4),(1,2),(1,4),(2,3),(2,4),(3,4)],5)=>43 ([(0,4),(1,2),(1,3),(2,3),(2,4),(3,4)],5)=>36 ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)=>30 ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)=>42 ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)=>50 ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4)],5)=>41 ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,4),(3,4)],5)=>47 ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)=>52 ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)=>53
search for individual values
searching the database for the individual values of this statistic
/ search for generating function
searching the database for statistics with the same generating function
click to show known generating functions       
Description
The number of non-isomorphic minors of a graph.
A minor of a graph $G$ is a graph obtained from $G$ by repeatedly deleting or contracting edges, or removing isolated vertices.
This statistic records the total number of (non-empty) non-isomorphic minors of a graph.
References
Code
# extremely naive and slow code
def statistic(G):
    l = 0
    for n in range(G.num_verts()+1):
        for H in graphs(n):
            try:
                m = G.minor(H)
                l += 1
            except ValueError:
                pass
    return l
Created
Sep 14, 2022 at 22:34 by Martin Rubey
Updated
Sep 14, 2022 at 22:34 by Martin Rubey