edit this statistic or download as text // json
Identifier
Values
=>
[1]=>0 [-1]=>0 [1,2]=>0 [1,-2]=>0 [-1,2]=>0 [-1,-2]=>1 [2,1]=>0 [2,-1]=>0 [-2,1]=>0 [-2,-1]=>0 [1,2,3]=>0 [1,2,-3]=>0 [1,-2,3]=>0 [1,-2,-3]=>1 [-1,2,3]=>0 [-1,2,-3]=>3 [-1,-2,3]=>17 [-1,-2,-3]=>60 [1,3,2]=>0 [1,3,-2]=>0 [1,-3,2]=>0 [1,-3,-2]=>0 [-1,3,2]=>3 [-1,3,-2]=>10 [-1,-3,2]=>10 [-1,-3,-2]=>22 [2,1,3]=>0 [2,1,-3]=>1 [2,-1,3]=>0 [2,-1,-3]=>2 [-2,1,3]=>0 [-2,1,-3]=>2 [-2,-1,3]=>5 [-2,-1,-3]=>13 [2,3,1]=>0 [2,3,-1]=>0 [2,-3,1]=>1 [2,-3,-1]=>1 [-2,3,1]=>2 [-2,3,-1]=>5 [-2,-3,1]=>4 [-2,-3,-1]=>7 [3,1,2]=>0 [3,1,-2]=>1 [3,-1,2]=>2 [3,-1,-2]=>4 [-3,1,2]=>0 [-3,1,-2]=>1 [-3,-1,2]=>5 [-3,-1,-2]=>7 [3,2,1]=>1 [3,2,-1]=>2 [3,-2,1]=>1 [3,-2,-1]=>1 [-3,2,1]=>2 [-3,2,-1]=>5 [-3,-2,1]=>1 [-3,-2,-1]=>1
search for individual values
searching the database for the individual values of this statistic
/ search for generating function
searching the database for statistics with the same generating function
click to show known generating functions       
Description
The number of edges in the reduced word graph of a signed permutation.
The reduced word graph of a signed permutation $\pi$ has the reduced words of $\pi$ as vertices and an edge between two reduced words if they differ by exactly one braid move.
Code
def statistic(pi):
    return pi.reduced_word_graph().size()
Created
Nov 27, 2022 at 20:32 by Martin Rubey
Updated
Nov 27, 2022 at 20:32 by Martin Rubey