Identifier
- St001872: Dyck paths ⟶ ℤ
Values
=>
Cc0005;cc-rep
[1,0]=>1
[1,0,1,0]=>3
[1,1,0,0]=>1
[1,0,1,0,1,0]=>3
[1,0,1,1,0,0]=>3
[1,1,0,0,1,0]=>3
[1,1,0,1,0,0]=>4
[1,1,1,0,0,0]=>1
[1,0,1,0,1,0,1,0]=>5
[1,0,1,0,1,1,0,0]=>3
[1,0,1,1,0,0,1,0]=>5
[1,0,1,1,0,1,0,0]=>3
[1,0,1,1,1,0,0,0]=>3
[1,1,0,0,1,0,1,0]=>3
[1,1,0,0,1,1,0,0]=>3
[1,1,0,1,0,0,1,0]=>4
[1,1,0,1,0,1,0,0]=>4
[1,1,0,1,1,0,0,0]=>4
[1,1,1,0,0,0,1,0]=>3
[1,1,1,0,0,1,0,0]=>4
[1,1,1,0,1,0,0,0]=>5
[1,1,1,1,0,0,0,0]=>1
[1,0,1,0,1,0,1,0,1,0]=>5
[1,0,1,0,1,0,1,1,0,0]=>5
[1,0,1,0,1,1,0,0,1,0]=>5
[1,0,1,0,1,1,0,1,0,0]=>6
[1,0,1,0,1,1,1,0,0,0]=>3
[1,0,1,1,0,0,1,0,1,0]=>5
[1,0,1,1,0,0,1,1,0,0]=>5
[1,0,1,1,0,1,0,0,1,0]=>5
[1,0,1,1,0,1,0,1,0,0]=>6
[1,0,1,1,0,1,1,0,0,0]=>3
[1,0,1,1,1,0,0,0,1,0]=>5
[1,0,1,1,1,0,0,1,0,0]=>6
[1,0,1,1,1,0,1,0,0,0]=>3
[1,0,1,1,1,1,0,0,0,0]=>3
[1,1,0,0,1,0,1,0,1,0]=>5
[1,1,0,0,1,0,1,1,0,0]=>3
[1,1,0,0,1,1,0,0,1,0]=>5
[1,1,0,0,1,1,0,1,0,0]=>3
[1,1,0,0,1,1,1,0,0,0]=>3
[1,1,0,1,0,0,1,0,1,0]=>6
[1,1,0,1,0,0,1,1,0,0]=>4
[1,1,0,1,0,1,0,0,1,0]=>6
[1,1,0,1,0,1,0,1,0,0]=>4
[1,1,0,1,0,1,1,0,0,0]=>4
[1,1,0,1,1,0,0,0,1,0]=>6
[1,1,0,1,1,0,0,1,0,0]=>4
[1,1,0,1,1,0,1,0,0,0]=>4
[1,1,0,1,1,1,0,0,0,0]=>4
[1,1,1,0,0,0,1,0,1,0]=>3
[1,1,1,0,0,0,1,1,0,0]=>3
[1,1,1,0,0,1,0,0,1,0]=>4
[1,1,1,0,0,1,0,1,0,0]=>4
[1,1,1,0,0,1,1,0,0,0]=>4
[1,1,1,0,1,0,0,0,1,0]=>5
[1,1,1,0,1,0,0,1,0,0]=>5
[1,1,1,0,1,0,1,0,0,0]=>5
[1,1,1,0,1,1,0,0,0,0]=>5
[1,1,1,1,0,0,0,0,1,0]=>3
[1,1,1,1,0,0,0,1,0,0]=>4
[1,1,1,1,0,0,1,0,0,0]=>5
[1,1,1,1,0,1,0,0,0,0]=>6
[1,1,1,1,1,0,0,0,0,0]=>1
[1,0,1,0,1,0,1,0,1,0,1,0]=>7
[1,0,1,0,1,0,1,0,1,1,0,0]=>5
[1,0,1,0,1,0,1,1,0,0,1,0]=>7
[1,0,1,0,1,0,1,1,0,1,0,0]=>5
[1,0,1,0,1,0,1,1,1,0,0,0]=>5
[1,0,1,0,1,1,0,0,1,0,1,0]=>5
[1,0,1,0,1,1,0,0,1,1,0,0]=>5
[1,0,1,0,1,1,0,1,0,0,1,0]=>6
[1,0,1,0,1,1,0,1,0,1,0,0]=>6
[1,0,1,0,1,1,0,1,1,0,0,0]=>6
[1,0,1,0,1,1,1,0,0,0,1,0]=>5
[1,0,1,0,1,1,1,0,0,1,0,0]=>6
[1,0,1,0,1,1,1,0,1,0,0,0]=>7
[1,0,1,0,1,1,1,1,0,0,0,0]=>3
[1,0,1,1,0,0,1,0,1,0,1,0]=>7
[1,0,1,1,0,0,1,0,1,1,0,0]=>5
[1,0,1,1,0,0,1,1,0,0,1,0]=>7
[1,0,1,1,0,0,1,1,0,1,0,0]=>5
[1,0,1,1,0,0,1,1,1,0,0,0]=>5
[1,0,1,1,0,1,0,0,1,0,1,0]=>5
[1,0,1,1,0,1,0,0,1,1,0,0]=>5
[1,0,1,1,0,1,0,1,0,0,1,0]=>6
[1,0,1,1,0,1,0,1,0,1,0,0]=>6
[1,0,1,1,0,1,0,1,1,0,0,0]=>6
[1,0,1,1,0,1,1,0,0,0,1,0]=>5
[1,0,1,1,0,1,1,0,0,1,0,0]=>6
[1,0,1,1,0,1,1,0,1,0,0,0]=>7
[1,0,1,1,0,1,1,1,0,0,0,0]=>3
[1,0,1,1,1,0,0,0,1,0,1,0]=>5
[1,0,1,1,1,0,0,0,1,1,0,0]=>5
[1,0,1,1,1,0,0,1,0,0,1,0]=>6
[1,0,1,1,1,0,0,1,0,1,0,0]=>6
[1,0,1,1,1,0,0,1,1,0,0,0]=>6
[1,0,1,1,1,0,1,0,0,0,1,0]=>5
[1,0,1,1,1,0,1,0,0,1,0,0]=>6
[1,0,1,1,1,0,1,0,1,0,0,0]=>7
[1,0,1,1,1,0,1,1,0,0,0,0]=>3
[1,0,1,1,1,1,0,0,0,0,1,0]=>5
[1,0,1,1,1,1,0,0,0,1,0,0]=>6
[1,0,1,1,1,1,0,0,1,0,0,0]=>7
[1,0,1,1,1,1,0,1,0,0,0,0]=>3
[1,0,1,1,1,1,1,0,0,0,0,0]=>3
[1,1,0,0,1,0,1,0,1,0,1,0]=>5
[1,1,0,0,1,0,1,0,1,1,0,0]=>5
[1,1,0,0,1,0,1,1,0,0,1,0]=>5
[1,1,0,0,1,0,1,1,0,1,0,0]=>6
[1,1,0,0,1,0,1,1,1,0,0,0]=>3
[1,1,0,0,1,1,0,0,1,0,1,0]=>5
[1,1,0,0,1,1,0,0,1,1,0,0]=>5
[1,1,0,0,1,1,0,1,0,0,1,0]=>5
[1,1,0,0,1,1,0,1,0,1,0,0]=>6
[1,1,0,0,1,1,0,1,1,0,0,0]=>3
[1,1,0,0,1,1,1,0,0,0,1,0]=>5
[1,1,0,0,1,1,1,0,0,1,0,0]=>6
[1,1,0,0,1,1,1,0,1,0,0,0]=>3
[1,1,0,0,1,1,1,1,0,0,0,0]=>3
[1,1,0,1,0,0,1,0,1,0,1,0]=>6
[1,1,0,1,0,0,1,0,1,1,0,0]=>6
[1,1,0,1,0,0,1,1,0,0,1,0]=>6
[1,1,0,1,0,0,1,1,0,1,0,0]=>7
[1,1,0,1,0,0,1,1,1,0,0,0]=>4
[1,1,0,1,0,1,0,0,1,0,1,0]=>6
[1,1,0,1,0,1,0,0,1,1,0,0]=>6
[1,1,0,1,0,1,0,1,0,0,1,0]=>6
[1,1,0,1,0,1,0,1,0,1,0,0]=>7
[1,1,0,1,0,1,0,1,1,0,0,0]=>4
[1,1,0,1,0,1,1,0,0,0,1,0]=>6
[1,1,0,1,0,1,1,0,0,1,0,0]=>7
[1,1,0,1,0,1,1,0,1,0,0,0]=>4
[1,1,0,1,0,1,1,1,0,0,0,0]=>4
[1,1,0,1,1,0,0,0,1,0,1,0]=>6
[1,1,0,1,1,0,0,0,1,1,0,0]=>6
[1,1,0,1,1,0,0,1,0,0,1,0]=>6
[1,1,0,1,1,0,0,1,0,1,0,0]=>7
[1,1,0,1,1,0,0,1,1,0,0,0]=>4
[1,1,0,1,1,0,1,0,0,0,1,0]=>6
[1,1,0,1,1,0,1,0,0,1,0,0]=>7
[1,1,0,1,1,0,1,0,1,0,0,0]=>4
[1,1,0,1,1,0,1,1,0,0,0,0]=>4
[1,1,0,1,1,1,0,0,0,0,1,0]=>6
[1,1,0,1,1,1,0,0,0,1,0,0]=>7
[1,1,0,1,1,1,0,0,1,0,0,0]=>4
[1,1,0,1,1,1,0,1,0,0,0,0]=>4
[1,1,0,1,1,1,1,0,0,0,0,0]=>4
[1,1,1,0,0,0,1,0,1,0,1,0]=>5
[1,1,1,0,0,0,1,0,1,1,0,0]=>3
[1,1,1,0,0,0,1,1,0,0,1,0]=>5
[1,1,1,0,0,0,1,1,0,1,0,0]=>3
[1,1,1,0,0,0,1,1,1,0,0,0]=>3
[1,1,1,0,0,1,0,0,1,0,1,0]=>6
[1,1,1,0,0,1,0,0,1,1,0,0]=>4
[1,1,1,0,0,1,0,1,0,0,1,0]=>6
[1,1,1,0,0,1,0,1,0,1,0,0]=>4
[1,1,1,0,0,1,0,1,1,0,0,0]=>4
[1,1,1,0,0,1,1,0,0,0,1,0]=>6
[1,1,1,0,0,1,1,0,0,1,0,0]=>4
[1,1,1,0,0,1,1,0,1,0,0,0]=>4
[1,1,1,0,0,1,1,1,0,0,0,0]=>4
[1,1,1,0,1,0,0,0,1,0,1,0]=>7
[1,1,1,0,1,0,0,0,1,1,0,0]=>5
[1,1,1,0,1,0,0,1,0,0,1,0]=>7
[1,1,1,0,1,0,0,1,0,1,0,0]=>5
[1,1,1,0,1,0,0,1,1,0,0,0]=>5
[1,1,1,0,1,0,1,0,0,0,1,0]=>7
[1,1,1,0,1,0,1,0,0,1,0,0]=>5
[1,1,1,0,1,0,1,0,1,0,0,0]=>5
[1,1,1,0,1,0,1,1,0,0,0,0]=>5
[1,1,1,0,1,1,0,0,0,0,1,0]=>7
[1,1,1,0,1,1,0,0,0,1,0,0]=>5
[1,1,1,0,1,1,0,0,1,0,0,0]=>5
[1,1,1,0,1,1,0,1,0,0,0,0]=>5
[1,1,1,0,1,1,1,0,0,0,0,0]=>5
[1,1,1,1,0,0,0,0,1,0,1,0]=>3
[1,1,1,1,0,0,0,0,1,1,0,0]=>3
[1,1,1,1,0,0,0,1,0,0,1,0]=>4
[1,1,1,1,0,0,0,1,0,1,0,0]=>4
[1,1,1,1,0,0,0,1,1,0,0,0]=>4
[1,1,1,1,0,0,1,0,0,0,1,0]=>5
[1,1,1,1,0,0,1,0,0,1,0,0]=>5
[1,1,1,1,0,0,1,0,1,0,0,0]=>5
[1,1,1,1,0,0,1,1,0,0,0,0]=>5
[1,1,1,1,0,1,0,0,0,0,1,0]=>6
[1,1,1,1,0,1,0,0,0,1,0,0]=>6
[1,1,1,1,0,1,0,0,1,0,0,0]=>6
[1,1,1,1,0,1,0,1,0,0,0,0]=>6
[1,1,1,1,0,1,1,0,0,0,0,0]=>6
[1,1,1,1,1,0,0,0,0,0,1,0]=>3
[1,1,1,1,1,0,0,0,0,1,0,0]=>4
[1,1,1,1,1,0,0,0,1,0,0,0]=>5
[1,1,1,1,1,0,0,1,0,0,0,0]=>6
[1,1,1,1,1,0,1,0,0,0,0,0]=>7
[1,1,1,1,1,1,0,0,0,0,0,0]=>1
search for individual values
searching the database for the individual values of this statistic
/
search for generating function
searching the database for statistics with the same generating function
Description
The number of indecomposable injective modules with even projective dimension in the corresponding Nakayama algebra.
Code
DeclareOperation("numberevenprojdiminj", [IsList]); InstallMethod(numberevenprojdiminj, "for a representation of a quiver", [IsList],0,function(L) local U,A,injA,W; A:=L[1]; injA:=IndecInjectiveModules(A); W:=Filtered(injA,x->IsEvenInt(ProjDimensionOfModule(x,33))=true); return(Size(W)); end );
Created
Dec 16, 2019 at 14:09 by Rene Marczinzik
Updated
Dec 16, 2019 at 14:09 by Rene Marczinzik
searching the database
Sorry, this statistic was not found in the database
or
add this statistic to the database – it's very simple and we need your support!