***************************************************************************** * www.FindStat.org - The Combinatorial Statistic Finder * * * * Copyright (C) 2019 The FindStatCrew * * * * This information is distributed in the hope that it will be useful, * * but WITHOUT ANY WARRANTY; without even the implied warranty of * * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. * ***************************************************************************** ----------------------------------------------------------------------------- Statistic identifier: St001944 ----------------------------------------------------------------------------- Collection: Finite Cartan types ----------------------------------------------------------------------------- Description: The number conjugacy classes of pairs of commuting elements in the Weyl group of given Cartan type. For any finite group $G$, this statistic is the cardinality of the set $$ \{ c(a_1,a_2) \ | \ a_1,a_2 \in G \text{ with } a_1a_2 = a_2a_1\}, $$ where $c(a_1,a_2) = \{ (ga_1g^{-1},ga_2g^{-1}) \ | \ g \in G \}.$ ----------------------------------------------------------------------------- References: [1] (reference broken) [[mathoverflow 468354]] ----------------------------------------------------------------------------- Code: def statistic(ct): G = WeylGroup(ct) r = 0 for c in G.conjugacy_classes_representatives(): C = G.centralizer(c) r += len(C.conjugacy_classes()) return r ----------------------------------------------------------------------------- Statistic values: ['A',1] => 4 ['A',2] => 8 ['B',2] => 22 ['G',2] => 32 ['A',3] => 21 ['B',3] => 84 ['C',3] => 84 ['A',4] => 39 ['B',4] => 325 ['C',4] => 325 ['D',4] => 146 ['F',4] => 441 ['A',5] => 92 ['B',5] => 1096 ['C',5] => 1096 ['D',5] => 274 ['A',6] => 170 ['B',6] => 3632 ['C',6] => 3632 ['D',6] => 1216 ['E',6] => 448 ['A',7] => 360 ['B',7] => 11184 ['C',7] => 11184 ['D',7] => 2796 ----------------------------------------------------------------------------- Created: Apr 05, 2024 at 11:43 by Martin Rubey ----------------------------------------------------------------------------- Last Updated: Apr 05, 2024 at 11:43 by Martin Rubey