edit this statistic or download as text // json
Identifier
Values
=>
[1,2]=>0 [2,1]=>0 [1,2,3]=>0 [1,3,2]=>1 [2,1,3]=>0 [2,3,1]=>0 [3,1,2]=>0 [3,2,1]=>1 [1,2,3,4]=>0 [1,2,4,3]=>1 [1,3,2,4]=>1 [1,3,4,2]=>1 [1,4,2,3]=>1 [1,4,3,2]=>2 [2,1,3,4]=>0 [2,1,4,3]=>1 [2,3,1,4]=>0 [2,3,4,1]=>0 [2,4,1,3]=>0 [2,4,3,1]=>1 [3,1,2,4]=>0 [3,1,4,2]=>1 [3,2,1,4]=>1 [3,2,4,1]=>1 [3,4,1,2]=>0 [3,4,2,1]=>1 [4,1,2,3]=>0 [4,1,3,2]=>1 [4,2,1,3]=>1 [4,2,3,1]=>1 [4,3,1,2]=>1 [4,3,2,1]=>2 [1,2,3,4,5]=>0 [1,2,3,5,4]=>1 [1,2,4,3,5]=>1 [1,2,4,5,3]=>1 [1,2,5,3,4]=>1 [1,2,5,4,3]=>2 [1,3,2,4,5]=>1 [1,3,2,5,4]=>2 [1,3,4,2,5]=>1 [1,3,4,5,2]=>1 [1,3,5,2,4]=>1 [1,3,5,4,2]=>2 [1,4,2,3,5]=>1 [1,4,2,5,3]=>2 [1,4,3,2,5]=>2 [1,4,3,5,2]=>2 [1,4,5,2,3]=>1 [1,4,5,3,2]=>2 [1,5,2,3,4]=>1 [1,5,2,4,3]=>2 [1,5,3,2,4]=>2 [1,5,3,4,2]=>2 [1,5,4,2,3]=>2 [1,5,4,3,2]=>3 [2,1,3,4,5]=>0 [2,1,3,5,4]=>1 [2,1,4,3,5]=>1 [2,1,4,5,3]=>1 [2,1,5,3,4]=>1 [2,1,5,4,3]=>2 [2,3,1,4,5]=>0 [2,3,1,5,4]=>1 [2,3,4,1,5]=>0 [2,3,4,5,1]=>0 [2,3,5,1,4]=>0 [2,3,5,4,1]=>1 [2,4,1,3,5]=>0 [2,4,1,5,3]=>1 [2,4,3,1,5]=>1 [2,4,3,5,1]=>1 [2,4,5,1,3]=>0 [2,4,5,3,1]=>1 [2,5,1,3,4]=>0 [2,5,1,4,3]=>1 [2,5,3,1,4]=>1 [2,5,3,4,1]=>1 [2,5,4,1,3]=>1 [2,5,4,3,1]=>2 [3,1,2,4,5]=>0 [3,1,2,5,4]=>1 [3,1,4,2,5]=>1 [3,1,4,5,2]=>1 [3,1,5,2,4]=>1 [3,1,5,4,2]=>2 [3,2,1,4,5]=>1 [3,2,1,5,4]=>2 [3,2,4,1,5]=>1 [3,2,4,5,1]=>1 [3,2,5,1,4]=>1 [3,2,5,4,1]=>2 [3,4,1,2,5]=>0 [3,4,1,5,2]=>1 [3,4,2,1,5]=>1 [3,4,2,5,1]=>1 [3,4,5,1,2]=>0 [3,4,5,2,1]=>1 [3,5,1,2,4]=>0 [3,5,1,4,2]=>1 [3,5,2,1,4]=>1 [3,5,2,4,1]=>1 [3,5,4,1,2]=>1 [3,5,4,2,1]=>2 [4,1,2,3,5]=>0 [4,1,2,5,3]=>1 [4,1,3,2,5]=>1 [4,1,3,5,2]=>1 [4,1,5,2,3]=>1 [4,1,5,3,2]=>2 [4,2,1,3,5]=>1 [4,2,1,5,3]=>2 [4,2,3,1,5]=>1 [4,2,3,5,1]=>1 [4,2,5,1,3]=>1 [4,2,5,3,1]=>2 [4,3,1,2,5]=>1 [4,3,1,5,2]=>2 [4,3,2,1,5]=>2 [4,3,2,5,1]=>2 [4,3,5,1,2]=>1 [4,3,5,2,1]=>2 [4,5,1,2,3]=>0 [4,5,1,3,2]=>1 [4,5,2,1,3]=>1 [4,5,2,3,1]=>1 [4,5,3,1,2]=>1 [4,5,3,2,1]=>2 [5,1,2,3,4]=>0 [5,1,2,4,3]=>1 [5,1,3,2,4]=>1 [5,1,3,4,2]=>1 [5,1,4,2,3]=>1 [5,1,4,3,2]=>2 [5,2,1,3,4]=>1 [5,2,1,4,3]=>2 [5,2,3,1,4]=>1 [5,2,3,4,1]=>1 [5,2,4,1,3]=>1 [5,2,4,3,1]=>2 [5,3,1,2,4]=>1 [5,3,1,4,2]=>2 [5,3,2,1,4]=>2 [5,3,2,4,1]=>2 [5,3,4,1,2]=>1 [5,3,4,2,1]=>2 [5,4,1,2,3]=>1 [5,4,1,3,2]=>2 [5,4,2,1,3]=>2 [5,4,2,3,1]=>2 [5,4,3,1,2]=>2 [5,4,3,2,1]=>3
search for individual values
searching the database for the individual values of this statistic
/ search for generating function
searching the database for statistics with the same generating function
click to show known generating functions       
Description
The number of descents of a permutation minus one if its first entry is not one.
This statistic appears in [1, Theorem 2.3] in a gamma-positivity result, see also [2].
References
[1] Athanasiadis, C. A. Gamma-positivity in combinatorics and geometry MathSciNet:3878174
[2] Shareshian, J., Wachs, M. L. Gamma-positivity of variations of Eulerian polynomials MathSciNet:4015851
Code
def statistic(pi):
    if pi(1) == 1:
        return pi.number_of_descents()
    else:
        return pi.number_of_descents()-1
Created
Jan 08, 2025 at 11:27 by Christian Stump
Updated
Jan 08, 2025 at 11:27 by Christian Stump