edit this statistic or download as text // json
Identifier
Values
=>
Cc0014;cc-rep
([],1)=>0 ([],2)=>0 ([(0,1)],2)=>0 ([],3)=>0 ([(0,1),(0,2)],3)=>0 ([(0,2),(2,1)],3)=>0 ([(0,2),(1,2)],3)=>0 ([],4)=>0 ([(0,1),(0,2),(0,3)],4)=>1 ([(0,2),(0,3),(3,1)],4)=>0 ([(0,1),(0,2),(1,3),(2,3)],4)=>0 ([(1,2),(2,3)],4)=>0 ([(0,3),(3,1),(3,2)],4)=>1 ([(1,3),(2,3)],4)=>0 ([(0,3),(1,3),(3,2)],4)=>1 ([(0,3),(1,3),(2,3)],4)=>1 ([(0,3),(1,2),(1,3)],4)=>0 ([(0,2),(0,3),(1,2),(1,3)],4)=>2 ([(0,3),(2,1),(3,2)],4)=>0 ([(0,3),(1,2),(2,3)],4)=>0 ([],5)=>0 ([(0,1),(0,2),(0,3),(0,4)],5)=>2 ([(0,2),(0,3),(0,4),(4,1)],5)=>1 ([(0,1),(0,2),(0,3),(2,4),(3,4)],5)=>1 ([(0,1),(0,2),(0,3),(1,4),(2,4),(3,4)],5)=>1 ([(0,3),(0,4),(4,1),(4,2)],5)=>1 ([(0,2),(0,3),(2,4),(3,4),(4,1)],5)=>1 ([(0,3),(0,4),(3,2),(4,1)],5)=>0 ([(0,2),(0,3),(2,4),(3,1),(3,4)],5)=>1 ([(0,1),(0,2),(1,3),(1,4),(2,3),(2,4)],5)=>2 ([(2,3),(3,4)],5)=>0 ([(0,4),(4,1),(4,2),(4,3)],5)=>2 ([(2,4),(3,4)],5)=>0 ([(1,4),(2,4),(4,3)],5)=>1 ([(0,4),(1,4),(4,2),(4,3)],5)=>2 ([(0,4),(1,4),(2,4),(4,3)],5)=>2 ([(0,4),(1,4),(2,4),(3,4)],5)=>2 ([(0,4),(1,4),(2,3)],5)=>0 ([(0,4),(1,3),(2,3),(2,4)],5)=>0 ([(0,4),(1,3),(1,4),(2,3),(2,4)],5)=>2 ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5)=>3 ([(0,4),(1,4),(2,3),(4,2)],5)=>1 ([(0,4),(1,3),(2,3),(3,4)],5)=>1 ([(0,4),(1,4),(2,3),(2,4)],5)=>1 ([(0,4),(1,4),(2,3),(3,4)],5)=>1 ([(0,4),(1,2),(1,4),(2,3)],5)=>0 ([(0,3),(1,2),(1,3),(2,4),(3,4)],5)=>1 ([(0,3),(0,4),(1,3),(1,4),(4,2)],5)=>2 ([(0,3),(0,4),(1,3),(1,4),(3,2),(4,2)],5)=>2 ([(0,4),(1,2),(1,4),(4,3)],5)=>1 ([(0,4),(1,2),(1,3),(1,4)],5)=>1 ([(0,2),(0,4),(3,1),(4,3)],5)=>0 ([(0,4),(1,2),(1,3),(3,4)],5)=>0 ([(0,2),(0,3),(1,4),(2,4),(3,1)],5)=>0 ([(0,4),(1,2),(1,3),(2,4),(3,4)],5)=>1 ([(0,3),(0,4),(1,2),(1,4)],5)=>0 ([(0,3),(0,4),(1,2),(1,3),(1,4)],5)=>2 ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4)],5)=>3 ([(0,3),(0,4),(1,2),(1,3),(2,4)],5)=>2 ([(0,3),(1,2),(1,4),(3,4)],5)=>0 ([(0,3),(0,4),(1,2),(2,3),(2,4)],5)=>2 ([(1,4),(3,2),(4,3)],5)=>0 ([(0,3),(3,4),(4,1),(4,2)],5)=>1 ([(1,4),(2,3),(3,4)],5)=>0 ([(0,4),(1,2),(2,4),(4,3)],5)=>1 ([(0,3),(1,4),(4,2)],5)=>0 ([(0,4),(3,2),(4,1),(4,3)],5)=>1 ([(0,4),(1,2),(2,3),(2,4)],5)=>1 ([(0,4),(2,3),(3,1),(4,2)],5)=>0 ([(0,3),(1,2),(2,4),(3,4)],5)=>0 ([(0,4),(1,2),(2,3),(3,4)],5)=>0 ([(0,3),(1,4),(2,4),(3,1),(3,2)],5)=>1 ([],6)=>0 ([(3,4),(4,5)],6)=>0 ([(2,3),(3,5),(5,4)],6)=>0 ([(3,5),(4,5)],6)=>0 ([(2,5),(3,5),(5,4)],6)=>1 ([(0,5),(1,5),(2,5),(3,5),(5,4)],6)=>3 ([(0,5),(1,5),(2,5),(3,5),(4,5)],6)=>3 ([(0,5),(1,5),(2,5),(3,4),(5,3)],6)=>2 ([(0,5),(1,5),(2,5),(3,4),(4,5)],6)=>2 ([(1,5),(2,5),(3,4)],6)=>0 ([(1,5),(2,4),(3,4),(3,5)],6)=>0 ([(0,4),(1,3),(2,3),(2,4),(3,5),(4,5)],6)=>2 ([(1,5),(2,5),(3,4),(5,3)],6)=>1 ([(1,5),(2,4),(3,4),(4,5)],6)=>1 ([(0,5),(1,4),(2,4),(4,5),(5,3)],6)=>2 ([(0,5),(1,5),(2,3),(5,4)],6)=>1 ([(1,5),(2,5),(3,4),(4,5)],6)=>1 ([(0,5),(1,5),(2,3),(3,5),(5,4)],6)=>2 ([(0,5),(1,5),(2,3),(3,4)],6)=>0 ([(0,5),(1,5),(3,2),(4,3),(5,4)],6)=>1 ([(0,4),(1,4),(2,3),(3,5),(4,5)],6)=>1 ([(0,5),(1,5),(2,3),(3,4),(4,5)],6)=>1 ([(0,5),(1,5),(2,4),(3,4)],6)=>0 ([(0,5),(1,4),(2,4),(3,5),(4,3)],6)=>1 ([(0,5),(1,5),(2,4),(3,4),(4,5)],6)=>2 ([(2,5),(3,4),(4,5)],6)=>0 ([(1,5),(2,3),(3,5),(5,4)],6)=>1 ([(1,3),(2,4),(4,5)],6)=>0 ([(1,5),(3,4),(4,2),(5,3)],6)=>0 ([(1,4),(2,3),(3,5),(4,5)],6)=>0 ([(0,4),(1,3),(3,5),(4,5),(5,2)],6)=>1 ([(0,5),(1,4),(4,2),(5,3)],6)=>0 ([(1,5),(2,3),(3,4),(4,5)],6)=>0 ([(0,5),(1,4),(2,5),(4,2),(5,3)],6)=>1 ([(0,4),(1,4),(1,5),(2,3),(3,5)],6)=>0 ([(0,5),(1,3),(4,2),(5,4)],6)=>0 ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)=>0 ([(0,5),(1,3),(2,4),(4,5)],6)=>0 ([(0,5),(1,4),(2,3),(3,4),(3,5)],6)=>1 ([(0,5),(1,3),(3,5),(4,2),(5,4)],6)=>1 ([(0,5),(1,4),(2,3),(3,5),(5,4)],6)=>1 ([(0,5),(1,4),(2,5),(3,2),(4,3)],6)=>0 ([(0,3),(1,4),(2,5),(3,5),(4,2)],6)=>0 ([(0,5),(1,4),(2,3),(3,5),(4,5)],6)=>1
search for individual values
searching the database for the individual values of this statistic
/ search for generating function
searching the database for statistics with the same generating function
Description
The interval resolution global dimension of a poset.
This is the cardinality of the longest chain of right minimal approximations by interval modules of an indecomposable module over the incidence algebra.
References
[1] Aoki, T., Escolar, E. G., Tada, S. Summand-injectivity of interval covers and monotonicity of interval resolution global dimensions arXiv:2308.14979
[2] https://github.com/xHoukakun/Interval-Resolution-Global-Dimension/tree/main
Created
Mar 07, 2025 at 13:26 by Jannek Müller
Updated
Mar 07, 2025 at 15:43 by Jannek Müller