Identifier
- St001054: Finite Cartan types ⟶ ℤ
Values
=>
Cc0022;cc-rep
['A',1]=>3
['A',2]=>15
['B',2]=>21
['G',2]=>33
['A',3]=>91
['B',3]=>165
['C',3]=>165
['A',4]=>612
['B',4]=>1365
['C',4]=>1365
['D',4]=>825
['F',4]=>2415
['A',5]=>4389
['B',5]=>11628
['C',5]=>11628
['D',5]=>7371
['A',6]=>32890
['B',6]=>100947
['C',6]=>100947
['D',6]=>65892
['E',6]=>89999
['A',7]=>254475
['B',7]=>888030
['C',7]=>888030
['D',7]=>591261
['E',7]=>1186680
['A',8]=>2017356
['B',8]=>7888725
['C',8]=>7888725
['D',8]=>5328180
['E',8]=>19137240
['A',9]=>16301164
['B',9]=>70607460
['C',9]=>70607460
['D',9]=>48208875
['A',10]=>133767543
['B',10]=>635745396
['C',10]=>635745396
['D',10]=>437766252
search for individual values
searching the database for the individual values of this statistic
/
search for generating function
searching the database for statistics with the same generating function
Description
The third positive Fuss-Catalan number of a finite Cartan type.
The positive Fuss-Catalan numbers of a finite Cartan type are given by
$$\frac{1}{|W|}\prod (d_i+mh-2) = \prod \frac{d_i+mh-2}{d_i}$$
where the products run over all degrees of homoneneous fundamenal invariants of the Weyl group of a Cartan type.
For the third Fuss-Catalan numbers see St000851The third Fuss-Catalan number of a finite Cartan type. and for the positive Fuss-Catalan numbers see St000140The positive Catalan number of an irreducible finite Cartan type..
The positive Fuss-Catalan numbers of a finite Cartan type are given by
$$\frac{1}{|W|}\prod (d_i+mh-2) = \prod \frac{d_i+mh-2}{d_i}$$
where the products run over all degrees of homoneneous fundamenal invariants of the Weyl group of a Cartan type.
For the third Fuss-Catalan numbers see St000851The third Fuss-Catalan number of a finite Cartan type. and for the positive Fuss-Catalan numbers see St000140The positive Catalan number of an irreducible finite Cartan type..
Code
def statistic(cartan_type): W = ReflectionGroup(cartan_type) return W.fuss_catalan_number(m=3, positive=True)
Created
Nov 21, 2017 at 09:32 by Christian Stump
Updated
Nov 21, 2017 at 09:32 by Christian Stump
searching the database
Sorry, this statistic was not found in the database
or
add this statistic to the database – it's very simple and we need your support!