edit this statistic or download as text // json
Identifier
Values
=>
Cc0005;cc-rep
[1,0]=>0 [1,0,1,0]=>0 [1,1,0,0]=>0 [1,0,1,0,1,0]=>0 [1,0,1,1,0,0]=>0 [1,1,0,0,1,0]=>0 [1,1,0,1,0,0]=>0 [1,1,1,0,0,0]=>0 [1,0,1,0,1,0,1,0]=>0 [1,0,1,0,1,1,0,0]=>0 [1,0,1,1,0,0,1,0]=>0 [1,0,1,1,0,1,0,0]=>0 [1,0,1,1,1,0,0,0]=>1 [1,1,0,0,1,0,1,0]=>0 [1,1,0,0,1,1,0,0]=>0 [1,1,0,1,0,0,1,0]=>0 [1,1,0,1,0,1,0,0]=>0 [1,1,0,1,1,0,0,0]=>0 [1,1,1,0,0,0,1,0]=>0 [1,1,1,0,0,1,0,0]=>0 [1,1,1,0,1,0,0,0]=>0 [1,1,1,1,0,0,0,0]=>0 [1,0,1,0,1,0,1,0,1,0]=>0 [1,0,1,0,1,0,1,1,0,0]=>0 [1,0,1,0,1,1,0,0,1,0]=>0 [1,0,1,0,1,1,0,1,0,0]=>0 [1,0,1,0,1,1,1,0,0,0]=>1 [1,0,1,1,0,0,1,0,1,0]=>0 [1,0,1,1,0,0,1,1,0,0]=>0 [1,0,1,1,0,1,0,0,1,0]=>0 [1,0,1,1,0,1,0,1,0,0]=>0 [1,0,1,1,0,1,1,0,0,0]=>0 [1,0,1,1,1,0,0,0,1,0]=>1 [1,0,1,1,1,0,0,1,0,0]=>1 [1,0,1,1,1,0,1,0,0,0]=>1 [1,0,1,1,1,1,0,0,0,0]=>3 [1,1,0,0,1,0,1,0,1,0]=>0 [1,1,0,0,1,0,1,1,0,0]=>0 [1,1,0,0,1,1,0,0,1,0]=>0 [1,1,0,0,1,1,0,1,0,0]=>0 [1,1,0,0,1,1,1,0,0,0]=>1 [1,1,0,1,0,0,1,0,1,0]=>0 [1,1,0,1,0,0,1,1,0,0]=>0 [1,1,0,1,0,1,0,0,1,0]=>0 [1,1,0,1,0,1,0,1,0,0]=>0 [1,1,0,1,0,1,1,0,0,0]=>0 [1,1,0,1,1,0,0,0,1,0]=>0 [1,1,0,1,1,0,0,1,0,0]=>0 [1,1,0,1,1,0,1,0,0,0]=>0 [1,1,0,1,1,1,0,0,0,0]=>1 [1,1,1,0,0,0,1,0,1,0]=>0 [1,1,1,0,0,0,1,1,0,0]=>0 [1,1,1,0,0,1,0,0,1,0]=>0 [1,1,1,0,0,1,0,1,0,0]=>0 [1,1,1,0,0,1,1,0,0,0]=>0 [1,1,1,0,1,0,0,0,1,0]=>0 [1,1,1,0,1,0,0,1,0,0]=>0 [1,1,1,0,1,0,1,0,0,0]=>0 [1,1,1,0,1,1,0,0,0,0]=>0 [1,1,1,1,0,0,0,0,1,0]=>0 [1,1,1,1,0,0,0,1,0,0]=>0 [1,1,1,1,0,0,1,0,0,0]=>0 [1,1,1,1,0,1,0,0,0,0]=>0 [1,1,1,1,1,0,0,0,0,0]=>0 [1,0,1,0,1,0,1,0,1,0,1,0]=>0 [1,0,1,0,1,0,1,0,1,1,0,0]=>0 [1,0,1,0,1,0,1,1,0,0,1,0]=>0 [1,0,1,0,1,0,1,1,0,1,0,0]=>0 [1,0,1,0,1,0,1,1,1,0,0,0]=>1 [1,0,1,0,1,1,0,0,1,0,1,0]=>0 [1,0,1,0,1,1,0,0,1,1,0,0]=>0 [1,0,1,0,1,1,0,1,0,0,1,0]=>0 [1,0,1,0,1,1,0,1,0,1,0,0]=>0 [1,0,1,0,1,1,0,1,1,0,0,0]=>0 [1,0,1,0,1,1,1,0,0,0,1,0]=>1 [1,0,1,0,1,1,1,0,0,1,0,0]=>1 [1,0,1,0,1,1,1,0,1,0,0,0]=>1 [1,0,1,0,1,1,1,1,0,0,0,0]=>3 [1,0,1,1,0,0,1,0,1,0,1,0]=>0 [1,0,1,1,0,0,1,0,1,1,0,0]=>0 [1,0,1,1,0,0,1,1,0,0,1,0]=>0 [1,0,1,1,0,0,1,1,0,1,0,0]=>0 [1,0,1,1,0,0,1,1,1,0,0,0]=>1 [1,0,1,1,0,1,0,0,1,0,1,0]=>0 [1,0,1,1,0,1,0,0,1,1,0,0]=>0 [1,0,1,1,0,1,0,1,0,0,1,0]=>0 [1,0,1,1,0,1,0,1,0,1,0,0]=>0 [1,0,1,1,0,1,0,1,1,0,0,0]=>0 [1,0,1,1,0,1,1,0,0,0,1,0]=>0 [1,0,1,1,0,1,1,0,0,1,0,0]=>0 [1,0,1,1,0,1,1,0,1,0,0,0]=>0 [1,0,1,1,0,1,1,1,0,0,0,0]=>1 [1,0,1,1,1,0,0,0,1,0,1,0]=>1 [1,0,1,1,1,0,0,0,1,1,0,0]=>1 [1,0,1,1,1,0,0,1,0,0,1,0]=>1 [1,0,1,1,1,0,0,1,0,1,0,0]=>1 [1,0,1,1,1,0,0,1,1,0,0,0]=>1 [1,0,1,1,1,0,1,0,0,0,1,0]=>1 [1,0,1,1,1,0,1,0,0,1,0,0]=>1 [1,0,1,1,1,0,1,0,1,0,0,0]=>1 [1,0,1,1,1,0,1,1,0,0,0,0]=>1 [1,0,1,1,1,1,0,0,0,0,1,0]=>3 [1,0,1,1,1,1,0,0,0,1,0,0]=>3 [1,0,1,1,1,1,0,0,1,0,0,0]=>3 [1,0,1,1,1,1,0,1,0,0,0,0]=>3 [1,0,1,1,1,1,1,0,0,0,0,0]=>6 [1,1,0,0,1,0,1,0,1,0,1,0]=>0 [1,1,0,0,1,0,1,0,1,1,0,0]=>0 [1,1,0,0,1,0,1,1,0,0,1,0]=>0 [1,1,0,0,1,0,1,1,0,1,0,0]=>0 [1,1,0,0,1,0,1,1,1,0,0,0]=>1 [1,1,0,0,1,1,0,0,1,0,1,0]=>0 [1,1,0,0,1,1,0,0,1,1,0,0]=>0 [1,1,0,0,1,1,0,1,0,0,1,0]=>0 [1,1,0,0,1,1,0,1,0,1,0,0]=>0 [1,1,0,0,1,1,0,1,1,0,0,0]=>0 [1,1,0,0,1,1,1,0,0,0,1,0]=>1 [1,1,0,0,1,1,1,0,0,1,0,0]=>1 [1,1,0,0,1,1,1,0,1,0,0,0]=>1 [1,1,0,0,1,1,1,1,0,0,0,0]=>3 [1,1,0,1,0,0,1,0,1,0,1,0]=>0 [1,1,0,1,0,0,1,0,1,1,0,0]=>0 [1,1,0,1,0,0,1,1,0,0,1,0]=>0 [1,1,0,1,0,0,1,1,0,1,0,0]=>0 [1,1,0,1,0,0,1,1,1,0,0,0]=>1 [1,1,0,1,0,1,0,0,1,0,1,0]=>0 [1,1,0,1,0,1,0,0,1,1,0,0]=>0 [1,1,0,1,0,1,0,1,0,0,1,0]=>0 [1,1,0,1,0,1,0,1,0,1,0,0]=>0 [1,1,0,1,0,1,0,1,1,0,0,0]=>0 [1,1,0,1,0,1,1,0,0,0,1,0]=>0 [1,1,0,1,0,1,1,0,0,1,0,0]=>0 [1,1,0,1,0,1,1,0,1,0,0,0]=>0 [1,1,0,1,0,1,1,1,0,0,0,0]=>1 [1,1,0,1,1,0,0,0,1,0,1,0]=>0 [1,1,0,1,1,0,0,0,1,1,0,0]=>0 [1,1,0,1,1,0,0,1,0,0,1,0]=>0 [1,1,0,1,1,0,0,1,0,1,0,0]=>0 [1,1,0,1,1,0,0,1,1,0,0,0]=>0 [1,1,0,1,1,0,1,0,0,0,1,0]=>0 [1,1,0,1,1,0,1,0,0,1,0,0]=>0 [1,1,0,1,1,0,1,0,1,0,0,0]=>0 [1,1,0,1,1,0,1,1,0,0,0,0]=>0 [1,1,0,1,1,1,0,0,0,0,1,0]=>1 [1,1,0,1,1,1,0,0,0,1,0,0]=>1 [1,1,0,1,1,1,0,0,1,0,0,0]=>1 [1,1,0,1,1,1,0,1,0,0,0,0]=>1 [1,1,0,1,1,1,1,0,0,0,0,0]=>3 [1,1,1,0,0,0,1,0,1,0,1,0]=>0 [1,1,1,0,0,0,1,0,1,1,0,0]=>0 [1,1,1,0,0,0,1,1,0,0,1,0]=>0 [1,1,1,0,0,0,1,1,0,1,0,0]=>0 [1,1,1,0,0,0,1,1,1,0,0,0]=>1 [1,1,1,0,0,1,0,0,1,0,1,0]=>0 [1,1,1,0,0,1,0,0,1,1,0,0]=>0 [1,1,1,0,0,1,0,1,0,0,1,0]=>0 [1,1,1,0,0,1,0,1,0,1,0,0]=>0 [1,1,1,0,0,1,0,1,1,0,0,0]=>0 [1,1,1,0,0,1,1,0,0,0,1,0]=>0 [1,1,1,0,0,1,1,0,0,1,0,0]=>0 [1,1,1,0,0,1,1,0,1,0,0,0]=>0 [1,1,1,0,0,1,1,1,0,0,0,0]=>1 [1,1,1,0,1,0,0,0,1,0,1,0]=>0 [1,1,1,0,1,0,0,0,1,1,0,0]=>0 [1,1,1,0,1,0,0,1,0,0,1,0]=>0 [1,1,1,0,1,0,0,1,0,1,0,0]=>0 [1,1,1,0,1,0,0,1,1,0,0,0]=>0 [1,1,1,0,1,0,1,0,0,0,1,0]=>0 [1,1,1,0,1,0,1,0,0,1,0,0]=>0 [1,1,1,0,1,0,1,0,1,0,0,0]=>0 [1,1,1,0,1,0,1,1,0,0,0,0]=>0 [1,1,1,0,1,1,0,0,0,0,1,0]=>0 [1,1,1,0,1,1,0,0,0,1,0,0]=>0 [1,1,1,0,1,1,0,0,1,0,0,0]=>0 [1,1,1,0,1,1,0,1,0,0,0,0]=>0 [1,1,1,0,1,1,1,0,0,0,0,0]=>1 [1,1,1,1,0,0,0,0,1,0,1,0]=>0 [1,1,1,1,0,0,0,0,1,1,0,0]=>0 [1,1,1,1,0,0,0,1,0,0,1,0]=>0 [1,1,1,1,0,0,0,1,0,1,0,0]=>0 [1,1,1,1,0,0,0,1,1,0,0,0]=>0 [1,1,1,1,0,0,1,0,0,0,1,0]=>0 [1,1,1,1,0,0,1,0,0,1,0,0]=>0 [1,1,1,1,0,0,1,0,1,0,0,0]=>0 [1,1,1,1,0,0,1,1,0,0,0,0]=>0 [1,1,1,1,0,1,0,0,0,0,1,0]=>0 [1,1,1,1,0,1,0,0,0,1,0,0]=>0 [1,1,1,1,0,1,0,0,1,0,0,0]=>0 [1,1,1,1,0,1,0,1,0,0,0,0]=>0 [1,1,1,1,0,1,1,0,0,0,0,0]=>0 [1,1,1,1,1,0,0,0,0,0,1,0]=>0 [1,1,1,1,1,0,0,0,0,1,0,0]=>0 [1,1,1,1,1,0,0,0,1,0,0,0]=>0 [1,1,1,1,1,0,0,1,0,0,0,0]=>0 [1,1,1,1,1,0,1,0,0,0,0,0]=>0 [1,1,1,1,1,1,0,0,0,0,0,0]=>0
search for individual values
searching the database for the individual values of this statistic
/ search for generating function
searching the database for statistics with the same generating function
click to show known generating functions       
Description
The dimension of $Ext_A^1(A/AeA,A)$ in the corresponding Nakayama algebra $A$ such that $eA$ is a minimal faithful projective-injective module.
Code

DeclareOperation("dimext1AAeAA",[IsList]);

InstallMethod(dimext1AAeAA, "for a representation of a quiver", [IsList],0,function(LIST)

local A,k,injA,RegA,temp,CoRegA,priA,U,UU;

A:=LIST[1];
k:=LIST[2];
projA:=IndecProjectiveModules(A);priA:=DirectSumOfQPAModules(Filtered(projA,x->IsInjectiveModule(x)=true));RegA:=DirectSumOfQPAModules(projA);
U:=TraceOfModule(priA,RegA);UU:=CoKernel(U);
return(Size(ExtOverAlgebra(NthSyzygy(UU,k-1),RegA)[2]));
end);
Created
May 13, 2018 at 11:41 by Rene Marczinzik
Updated
May 13, 2018 at 11:41 by Rene Marczinzik