Identifier
- St001053: Finite Cartan types ⟶ ℤ
Values
=>
Cc0022;cc-rep
['A',1]=>2
['A',2]=>7
['B',2]=>10
['G',2]=>16
['A',3]=>30
['B',3]=>56
['C',3]=>56
['A',4]=>143
['B',4]=>330
['C',4]=>330
['D',4]=>196
['F',4]=>595
['A',5]=>728
['B',5]=>2002
['C',5]=>2002
['D',5]=>1254
['A',6]=>3876
['B',6]=>12376
['C',6]=>12376
['D',6]=>8008
['E',6]=>11067
['A',7]=>21318
['B',7]=>77520
['C',7]=>77520
['D',7]=>51272
['E',7]=>105248
['A',8]=>120175
['B',8]=>490314
['C',8]=>490314
['D',8]=>329460
['E',8]=>1225367
['A',9]=>690690
['B',9]=>3124550
['C',9]=>3124550
['D',9]=>2124694
['A',10]=>4032015
['B',10]=>20030010
['C',10]=>20030010
['D',10]=>13748020
search for individual values
searching the database for the individual values of this statistic
/
search for generating function
searching the database for statistics with the same generating function
Description
The second positive Fuss-Catalan number of a finite Cartan type.
The positive Fuss-Catalan numbers of a finite Cartan type are given by
$$\frac{1}{|W|}\prod (d_i+mh-2) = \prod \frac{d_i+mh-2}{d_i}$$
where the products run over all degrees of homoneneous fundamenal invariants of the Weyl group of a Cartan type.
For the second Fuss-Catalan numbers see St000852The second Fuss-Catalan number of a finite Cartan type. and for the positive Fuss-Catalan numbers see St000140The positive Catalan number of an irreducible finite Cartan type..
The positive Fuss-Catalan numbers of a finite Cartan type are given by
$$\frac{1}{|W|}\prod (d_i+mh-2) = \prod \frac{d_i+mh-2}{d_i}$$
where the products run over all degrees of homoneneous fundamenal invariants of the Weyl group of a Cartan type.
For the second Fuss-Catalan numbers see St000852The second Fuss-Catalan number of a finite Cartan type. and for the positive Fuss-Catalan numbers see St000140The positive Catalan number of an irreducible finite Cartan type..
Code
def statistic(ct): return ReflectionGroup(ct).fuss_catalan_number(m=2, positive=True)
Created
Nov 21, 2017 at 09:31 by Christian Stump
Updated
Nov 21, 2017 at 09:31 by Christian Stump
searching the database
Sorry, this statistic was not found in the database
or
add this statistic to the database – it's very simple and we need your support!